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Abstract. We consider a completely integrable lattice regularization of the sine—~Gordon model
with discrete space and continuous time. We derive a determinant representation for a correlation
function which in the continuum limit turns into the correlation function of local fields. The
determinant is then embedded into a system of integrable integro-differential equations. The
leading asymptotic behaviour of the correlation function is described in terms of the solution of
a Riemann-Hilbert Problem (RHP) related to the system of integro-differential equations. The
leading term in the asymptotical decomposition of the solution of the RHP is obtained.

1. Introduction

The sine—Gordon model is completely integrable (exactly solvable) both on the classical
and on the quantum level [1-7]. We shall write the sine—Gordon equation in the following
form:

32 32 m2
ﬁu(x,t)— wu(x,t)—i—ysinﬂu(x,t) =0. (1.2)
Herem is a massg is the coupling constant. For later convenience we also introduce
,32
Yy = '

In the classical case(x,t) is a function of two variablesy andt are space and time
coordinates. In the quantum casg, 1) is a local quantum field of the sine—-Gordon model.
The Hamiltonian reads

_ 1, 1 2 m?
H—/dx (Zp +é(8Xu) +ﬁ(l cos ﬂu)). (1.2)
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Momentum and topological charge are given by

P:—/d.xpaxu 0= %/dx&xu. (1.3)

Here p(x,t) = d,u(x,t) and u(x,t) satisfy Poisson bracketip(x), u(y)} = §(x — y).
Equation (1.1) has a Lax representation and a classioahtrix [1-6]. After quantization,
the fieldsu and p satisfy canonical commutation relations(f), p(y)] = i6(x — y). The
physical ground state) of the quantum system can be obtained by filling the Dirac sea
of negative energy pseudoparticles [7].

Let us now consider the quantum operator

expaQ(x)) = exp{ozf(u(x) - u(O))} 0x) = %/{; dz 9.u(z) (1.4)

where Q(x) measures the topological charge on the intervak]0In this paper we show
how to represent the correlation function

(2] expla O (x))|€2) 1.5)

as the determinant of an integral operator (in fact we shall see below, that the coefficient
« in (1.5) needs to be renormalized). Note that via differentiation with respeet we

can obtain correlation functions of local quantum fields from (1.5). We shall consider the
quantum version of (1.2) in the regicdh < y < % (many of our intermediate results hold

in larger regions of coupling constant). Note that> 0 is the quasiclassical region of the
sine—Gordon model and gt = /2 the spectrum of the Hamiltonian is equivalent to free
fermions. To deal with the ultraviolet divergences of the continuum model we shall employ
a suitably chosen lattice regularization.

The determinant representation then permits us to describe the correlation functions
in terms of a system of integrable integro-differential equations. These equations can be
solved by means of a Riemann—Hilbert problem (RHP) which in turn enables one to obtain
elementary formulae for the asymptotics of the correlation functions. This program has first
been applied to the nonlinear Sédinger equation in [8] and is described in detail in the
book [9] (see also [10]).

There has been previous work on determining correlation functions in the sine—Gordon
model. Form factors were determined by Smirnov in [11,12]. At the free fermionic point
y = /2 a determinant representation of the correlation function (1.5) has been constructed
using the coordinate Bethe ansatz in [13]. A description of a different correlator at the free
fermionic point through a Fredholm determinant (derived from a form factor sum) which in
turn satisfies an integrable differential (sinh-Gordon) equation has been obtained in [14]. In
this paper we start the investigation of correlation functions in the sine—-Gordon model for
generaly, in particular away from the free fermionic point in the framework of its solution
[15,16] by means of the quantum inverse scattering method (QISM).

The plan of this paper is as follows: in section 2 we review the integrable lattice
regularization of the sine—Gordon model introduced in [16]. The algebraic Bethe ansatz
is formulated and the construction of the ground state [17] is discussed. In section 3
we derive the determinant representation of the correlator (1.5) for the range of coupling
constants stated above. As this part of the analysis is very similar to the analogous problem
for the spin% HeisenbergX X Z model (which was treated in full detail in [22]) we omit
many details and only give an account of the main steps without providing proofs (which
can be found in [22]). In sections 4 and 5 we embed the determinant representation into
a system of integrable integro-differential equations and in section 6 the related RHP is
formulated and the leading asymptotic behaviour of the correlation function is extracted.



Correlation function of the sine—Gordon model 221
2. Lattice sine—Gordon

2.1. L-operator

We shall consider a lattice version of the sine—Gordon model which is also completely
integrable. It will have exactly the samematrix (both in the classical and quantum case)
as the continuous model. The element&rpperator of the LSG model is [15, 16]

L) = e 1Prn/8p, @=ibpn/8 %mA'sinh()\ —iBun/2)
—%mA sinh(Ax + iBu,/2) gpr/8p, gbrn/8
Here A is the lattice constant ang,, u, are the dynamical variables on siteof the
lattice. In the quantum model they obey canonical commutation relatiogn®[,] = 8.
q y y
Furthermore, we have introduced
pn = (1+ 25 cosBuy)? S = (Ama)z. 2.2)

The symmetries of th&-operator of the LSG model are expressed by the identities (the
asterisk means Hermitian conjugation of the quantum operators)

2.1)

o’ L*(n|M)o” = L(n|r) o Ln|V)o® = L(n|A + in). (2.3)
Its quantum determinant [15, 16] is
detL(n|A) =1+ 25cosh 2. (2.4)
q

The L-operator (2.1) satisfies the Yang—Baxter equation
R, w)(L(n|dh) @ L(n|w)) = (L(n|p) & L(n|A) R, p1). (2.5)

R(x, n) in equation (2.5) is the standard sine—Gord®matrix given by the following
expression:

S, A) 0 0 0
RO p) = 8 g(“l’ M g(:’ o 8 (2.6)
0 0 0 Sfp, 2)
Here
_sinh(n — & —iy) o siny
fp, A) = TS — ) g, A) = '7sinh(u T (2.7)

In different sites of the lattice the matrix elementstbfommute. As usual in the QISM
we define the monodromy matrix by taking products of theperators in matrix space:

T = LILIMNLL — 1A ... LR (2.8)

where L is the number of sites in the lattice which we take to be even. By construction
this operator also satisfies a Yang—Baxter equation

R, )T @T () = (T() @ TR, ). (2.9)

It might be interesting to point out that the entries fo tBeoperator (2.1) form a
representation of a quantum group: The operators (we suppress the site;jndex

st=__ 2 eiﬁp/Bpéﬂp/S
Isiny mA

ST = —2 e_iﬂp/gpe_iﬂp/g
isiny mA

SO — e—iﬂu/z Sl — éﬂu/z
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satisfy the commutation relations of the quadratic (Sklyanin) algebra

[s*.87]= (892 - (sH?) [s° s11=0

q-q*

with ¢ = exp(iy). For g being a root of unity this algebra has finite dimensional cyclic
representations: for rational values of the parameter = Q/P the quantum operators
entering theZ-operator can be written asP2x 2P matrices with elements

X = gpfu/2 8abei”(“_1)/P T =éebr/t 8at0.b a,b=1,...,2P, a+ 2P =a.

The definition of theL operator alone does not determine a definite lattice model: in
addition the Hamiltonian of the lattice sine—Gordon model needs to be specified. For this
choice there exist several different possibilities (see [15, 16, 18]). All of them are completely
integrable and can in fact be diagonalized simultaneously. Furthermore, all of them have
the same continuum limit (1.2). They differ from one another by higher orders in the lattice
spacingA. While all of them can be considered equivalently as a lattice regularization of
the continuum model we shall show below, howraquelattice Hamiltonian can be chosen
by requiring that it has the ‘same’ ground state wavefunction as the continuum model. This
choice of the Hamiltonian will bring the dynamics of the lattice model as close as possible
to that of the continuum model.

2.2. Algebraic Bethe ansatz for the lattice sine—~Gordon model

We shall consider the monodromy matrix (2.8)

_ (AR BM)
T(x)_<cm Dm). (2.10)

As a direct consequence of the Yang—Baxter equation (2.5)7for) the trace of the
monodromy matrix, the so-called transfer matrix

t()) = traceT (\) = A(A) + D(X) (2.11)

commutes for different values of the spectral paramgtere. [t(1), (u)] = 0. Hence,

it is the generator of commuting integrals for the system which are diagonalized by the
algebraicBethe ansatzThe starting point is the ‘pseudo-vacuum’ (or reference state). To
construct this simple eigenstate ofr) we combine theC-operators in pairs:

A _ _ [ % ()‘*) ﬂn()‘)

Ln|A) = L(2nIM)L(2n — 1)) = ()/n()x) 8, (1) ) . (2.12)
Choosing
(u]0y, = {1 - 28 cosg(uz,l + uzn_l)}2 1) <u2n — Upy—1 — g + 2;) (2.13)

(for rationaly /m = Q/ P theé-function can be replaced by a Kronecléesymbol and0),
will become normalizable) we find from (2.12)
Vn()‘)l())n =0
a,(A)]0), = {1+ 25 cosh2x — iy)}|0), (2.14)
3,(M)10), = {14 2S5 cosh2x + iy)}|0),.
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Now we can follow the standard steps of the algebraic Bethe ansatz. As a consequence of
(2.14) the ‘global pseudo-vacuum’

L)2

0)=]]I0) (2.15)
n=1

is an eigenstate of the operatotgi) and D()) (and hence the transfer matrix (2.11)) with
eigenvaluesi (L) andd()), respectively:
a(h) = {1+ 2§ cosh2n — iy)}? d(A) = {1+ 2S cosh2x + iy)}%. (2.16)

More eigenfunctions of the transfer matrix are found by acting with the opeBator on
the pseudo-vacuum

N
[[B)I0) 2.17)
j=1

provided that thg;} satisfy the Bethe ansatz equations

1+ 2Scosh2x; —iy) E oy sinhOg = g+ iy) (2.18)
1+2Scosh2; +iy) ) LA sinh(y — A —iy)’ '
The corresponding eigenvalue of the transfer matrix (2.11) is
N N
A(A[A}) =a(k)l_[f()»,kj)+d(?») S A) (2.19)
j=1 j=1

where f (A, u) has been defined in (2.7).
The numbetV of the Bethe ansatz roots can be identified with the topological charge
(1.3). The correct lattice version in the quantum case is

L/2

_4 _ -y
0= ;(m 1) + L (2.20)

The difference in the coefficient compared to (1.3) is related to the fractional charge of the
excitations. In [19] it was shown that the fractional charge appears due to the repulsion
beyond the cut-off in the process of ultraviolet renormalization. Equation (2.20) is the
number operator for particles

N N
o[ [B1)I0y=N]]BG)I0).
j=1 j=1
One can prove that (hekg* is the Pauli matrix in the matrix space)

[0. T(W] =3[0, TW].

Now we can discuss our choice of the lattice Hamiltonian for the lattice sine—Gordon
model. As mentioned above we want to construct a lattice version resembling the dynamics
of the continuum model as closely as possible. According to the standard quantization of
the sine—Gordon model the ground state of the continuum model contains no bound states
(strings).

For possible lattice models we shall concentrate on the two integrable models introduced
in [15, 16, 18]. The latter has been constructed by Tarasov, Takhtajan and Faddeev (TTF)
such that it contains interactions of nearest neighbours on the lattice only. The ground state
for this Hamiltonian was found in [20]: in addition to a Dirac sea of elementary particles it
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contains bound states. In the continuum limit the density of the bound states vanishes, thus,
reproducing the known results for the continuum model. Apart from the Hamiltonian the
QISM yields higher integrals of motion. These describe interactions over larger distances.
Adding these interaction terms to the TTF Hamiltonian with coefficients vanishing in the
continuum limit A — 0 producedifferent lattice Hamiltonians with thsamecontinuum

limit while preserving integrability. This is the origin of the freedom in choice of the lattice
hamiltonian.

Another Hamiltonian for the lattice sine—Gordon model has been introduced in [15, 16].
The corresponding ground state for this Hamiltonian has been constructed by Bogoliubov
[17]: he was able to prove that in the interval3 < y < 27/3 the ground state is built
from elementary particles only—just as in the continuum model. Furthermore, he found that
the set of observable excitations coincides with the continuum model. Hence, unlike the
situation in the TTF model no phase transition is met in performing the continuum limit. For
the reasons stated above we choose this Hamiltonian for our studies of correlation functions.

It is given in terms of trace identities. Expressing the zeu@s) = 0 anda(v+) =0
of (2.16) as

. : 28
e — +1la-iy s — +1dy —
*=—-p7€ t = —pe whereb = 1 T (2.21)

(At = %(in +Inb) are the zeroes of the quantum determinant (2.4})ofThe Hamiltonian
of the lattice sine—Gordon model considered here is given by

_ m2A . (L) (9, T
HLs6 = = 32, siny {é (alxl a(,\)>m+ —° (ax n a(k))A:K_

+e—'y( In ’(”> _ @ (a In “”) } (2.22)
o A0y ), o dny ),

This is the model studied in [15, 16]. From (2.19) one finds that (2.17) are eigenfunctions
of this Hamiltonian with energy eigenvalues given by

HLSG]_[B(A )|0) = (Zhw) HB(A )[0) (2.23)

with the single partlcle energies

m2A g e v
hd) = 32bi {Sinl’(K+ —A)sinh(k; — A; —iy) B sinh(x_ — A) sinh(k_ — A —iy)
e iy dr
~ sinh(vy — A) sinh(vy — A +iy) * sinhw_ — Aj)sinh(v_ — A +iy) }

(2.24)

In the continuum limitA — O (which is reached by lettingg — 0 here) one immediately
reproduces the result [7]

h(3) a0 = sm?Asiny cosh2

for the single particle dispersion of the continuum model.

To find the solution of (2.18) corresponding to the ground state of the model it is
necessary to classify the possible configurations;an the complex plane according to the
so called string hypothesis [21]. The details of this are not important in the present context.
It was found by Bogoliubov [17] that the ground state of (2.22) is obtained by filling all
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permitted states of pseudoparticles with rapiditigson the line Imk = /2. Taking the
logarithm of equation (2.18) in such a state one obtains

L T . sinh(A; — A +1iy)
—plAj+i=)=27Q; —i In< - ! . ) (2.25)
2 ( J 2) J Xk: sinh(; — Ax —iy)

Here theQ; are distinct integers characterizing the state uniquely and

AN 1—25cosh2x —iy)
p(A—HE)_ 'in (1—ZScosr(2A+iy)>'

In the thermodynamic limit the density(%;) = 13Q;/d4; is then given in terms of the
integral equation

1 , T +o00
o (A + 'E) =2mp (1) + / du KL — w)p () (2.26)
where
—si —25si
KO = — sy sinay 2.27)
sinh(x 4+ iy)sinh(A —iy) cosh2 —cos%
This integral equation can be solved by Fourier transform resulting\ ig- (— In b)
1 [® . sinhik(r — 1
p(h) = 7/ dke™———2 (nl v) COS=kA. (2.28)
At J_ sinhzky coshsk(mr —y) 2

Similarly one can compute the excitation energies. This is useful to find the correct mass
renormalization formula. To perform the continuum limit of the sine—Gordon model one
should letA — 0 and simultaneously: — oo as

m = constantA /7. (2.29)

3. Algebraic formulation of correlation functions

For the evaluation of the correlation function (1.5) we shall make extensive use of the
similarity (in the framework of the QISM) of the LSG model with the séinXXZ
Heisenberg chain which is derived from a monodromy matrix satisfying a Yang-Baxter
equation with the sam&-matrix (2.6) as the present model. The correlation functions
corresponding to (1.5) in th& XZ model have have recently been studied in [22, 23].

First we note, that the symmetry of th& operator (2.3) implies for the ground state
configuration consisting of rapiditie{ij = Aj +im/2} with real A,

(B = CG)).

In order to express the correlation function (1.5) in the algebraic framework outlined above
we first need to define the lattice analogue of the operéor) in (1.4). The correct
expression is found to be

4 & -y
Q1(n) = - ) (ux —ug-1) +n () (3.1)
B ,; 2y
which counts the number of particles in the interval{JL(n even). In the continuum limit
this expression becomes
14

01(n) — z(u(x) —u(0)) + % (7-[2_7/> x =nA. (3.2)



226 F H L ERler et al

Hence the lattice analogue of the correlation function (1.5) can be written as

(O TTI; CGup) expler Q1(m) ey B(i)[0)
(OI T, G TTiy BGOIO)

whereij are solutions of the Bethe ansatz equations (2.18) for the ground state configuration.

Let us first study the norm appearing in the denominator of this expression. To evaluate
this expression one should commute tﬁeij) to the right of the product where they
annihilate the pseudo-vacuui®). Since the commutation relations between the elements
of the monodromy matrix (2.10) are completely determined byRhwmatrix we can use the
result of [24, 22] (see also [25, 26]) for the norm of Bethe ansatz states (after identifying
with 2(zx — n) in paper [22])

(2 explaQ1(n))|2) = (3.3)

N N N
o J[can]]BGoIo) = (- siny)N{ [Tro. xk)H ]"[a(i,»)dd,»)} det\’ (3.4)
j=1 j=1 J#k j=1
where theN x N matrix A/ is given by
0 aby) KN . . } .
Nig = 8jxyi— In—2. K —A)p — KR — ).
jk ”‘{'a/\j nd(kj) +; (A ) (A — Ae)

The functionskK (1) anda()), d(1) have been introduced in the previous section. In the
thermodynamic limit this expression can be further simplified: We rewite: 7- 7 where
K(hj — )
O
e N .
in 4% | > K Gy — ).
8)‘1' d()‘l) n=1

Tk = 8jx — Tjk = 8k

.0
0]‘=|7~

Comparing the last expression with equations (2.25) and (2.26) for the ground state density
of particles one obtaing; = —27Lp(%;). Performing the thermodynamic limit on the

matrix Z one finds that it turns into a Fredholm integral operﬂ?o& 1+ %I? acting as

n 1 +o00
T fli= 100+ 5 [ dukG=wfGo. (3.5)
Here K (1) is the kernel given in (2.27).

Putting everything together we find

N N
OJcap]]BGoI0 = <2aniny)N{ [1rey. xk)}
j=1 j=1 Jj#k

N
- - 1 .
ANdA)p()pdet[1+ —K ). 3.6
X{,Ul““) (,)p(,)} ( + o ) (3.6)

We now turn to the numerator of (3.3): to reduce the evaluation of the expectation value
of exp(w Q1(n)) in a Bethe state (2.17) to the computation of scalar products we divide the
lattice of lengthL into two sub-chains of length and L — n and associate a monodromy
matrix with each of them, namely

TO)=TQNTLY TG 1= (/é{ &; g%%) i=1.2 3.7)
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In terms of L-operators they are given by

T2, ) =LL,VNLL—-1L,1)...Ln+12)

TAAN =L, LM —1,1)...L(1,10).
By construction these monodromy matrices satisfy the same Yang—Baxter equation (2.9) as
7 (»). Similarly, the global reference state (2.15) can be decomposed into a direct product
of pseudo vacua for the subchaifs, ® |0); (remember that we have choseito be even)
which are eigenstates of; (1) and D; ()

A;(M0); = a;(M)|0); D;(M)]0); = d;(M)|0); (3-8)
whereg; (A) andd; (1) are given by (2.16) with replaced byr and L —n fori = 1, 2,
respectively. The creation and annihilation opera®s.) and C; (1) act according to

Ci(M)10); =0 (0B; () = 0. (3.9)

In this decomposed quantum space the numerator of (3.3) can be rewritten as (see e.g.
[9,22)])

Y s 0|]_[c1<x 1‘[31@ D10)1 2000 [ [ €250 [ | B2GF,)10)2

I1c 11

e‘“”l{ [ 1 a2G2)da(5, ” [ “1()‘11c)d1(k113)}

Ip,Ic IIg,IIc

x{ ]‘[ FOE A8 ) H ]‘[ FO6. 285 } (3.10)

Ip,11p Ie,I1c

where the sum is over all partitions
APYU],) =1} BryN{l, =0
RIUGRL) =0 BN RG) =0

of the set{i} with card,,} = cardi,.} = ns, cardi;;.} = cardi;;,} = N —ny. Due to

(3.9) we only need to consider partitions such that the sizdg ehd - (and/1z andi1¢)

are the same. We next turn to an investigation of the scalar products occurring in (3.10).
Owing to (3.8) and (3.9) and the fact that the monodromy matric@sa) fulfill the same
Yang—Baxter equation (2.9) &5(1) it is sufficient to consider scalar products on the entire
lattice

N N
sy=0]]coHT]BADI0).
j=1 k=1

Here we do not assume that the sets of spectral param@t&ysand {A¢} are the same,

and we also do not impose the Bethe equations (2.18). From (2.9) and the action on the
reference statd (1)|0) = a(1)|0), D(1)|0) = d(1)|0) it follows that scalar products can be
represented as

A S VES
Sy —gj]"[a(x )Hd(x )KN( 04 ) (3.11)
where the sum is over all partitions ¢£¢} U {18} into two sets{r4} and {A”}. The
coefficientsKy are functions of the.; and arecompletely determined by the intertwining
relation (2.9). TheR-matrix (2.6) is, however, identical to the one for the séihleisenberg

X XZ model (after appropriate identifications of the coupling constants). This implies that
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the coefficientsky for the sine—Gordon model and tkeX Z chain are identical, so that we
can take over the result for théX Z case (see e.g. [22]). The main point is that Ke's
can be represented agterminants This is done in two steps: first the so-callbihest
coefficientswhich are obtained for the partitign?} = {1}, {AP} = {AB}, are represented
as determinants

Ky () ) = [ 1207 2H8GL 25 ) [TheS 2P detm)
N {XC} {)\.B} = A A )8 (A j y i Nk C
Js

Jj>k

) " (3.12)
_J,v By 8WAj s A — +(3C 3B
h(/L’ V)— g('u’ \)) (MC)Jk h(AC,Af) —t()\. ,)\k)
where from (2.7)
_sinh(. — p —iy) B —sify
ha ) = —""dn, 105 1) = GinbG — 1o — i) SinhGr — 1)

In the second step arbitrary coefficientsy are then expressed in terms of highest
coefficients as follows

C B
(] )= (0L o) (111 o)
jeAC keDC leAB meDB

{)\AB} {)\DC} {)\.AC} {)\‘DB}
XK"({)\'AB} {)\'DC})KNH<{)\’AC} {)\DB}) (313)

Using (3.12) and (3.13) in (3.11) we obtain the following expression for general scalar
products in the lattice sine—Gordon model

Sy =[2G 20)8(f AP )ngrtpc)sgr(m]"[h(x” x,f”)]"[h(x“ P
Jj>k
x Hh(A,AC WO Tro22, An‘fﬂ)det(MDc)det(MDB (3.14)

j.m

where Pc is the permutation{A{€, ..., A4C APC . ADC v of (Af,..., 2§}, Pp is the

sy

permutation{AP8, ... ADB jAB 4B 3 of {AB,...,AZ’@}, sgn(P) is the sign of the

’ n

permutationP, and

(Mpe)je = 1045, 229d0LDYa(r?). (3.15)
Following the steps first carried out in [27] it is now possible to represgnas a single
determinant. The discussion for sine—Gordon is identical to the only foXtki& chain
[22] so that we only present a brief discussion of the necessary steps and give the final
result. We first note that the sum on the r.h.s. in (3.14) looks very similar to a Laplace
decomposition of the determinant of themof two matrices(S1)x = t(A¢, A,f)a(kf)d(/\f)
and (S2)jx =t (A8, Af)d(kf)a(k,f) (see e.g. [9] p 221). However, this does not reproduce
the h(x, n)-factors. This leads to the introduction ofdaal quantum fieldp() acting in a
bosonic Fock space with vacy@ and (OH according to

e = pA) +q0) [p(A), ()] =0 Olg(») = 0= p(1)|0)
[P, g(w)] = = In(h(X, Wh(i, 1)) [PV, p()] =0=1[qg), g(w)].

We emphasize that the field commutes for different values of spectral parameters. Using
the dual field it is now possible to recast (3.14) asirggle determinant of the sum of two

(3.16)

1 We use the same notation as in [22].
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matrices

Sy =]]e(f 2H)gGf. AB)Ha(kc)d(AB)Hh(AC 72 (0| dets|0)

j>k

b e e (3.17)
r(.B OB, ABYR(E, 06)
Sik =t ML) + 1O AT expip(Al) — p(AS !
=1, A0 + 1O, AT (AC) Pe(f) — o ))Hh(kg,xf)h(xf,k,ﬁ)
wherer(A) = %. The consequence of representifig as a single determinant is the

occurrence of the expectation value in the dual space.

Using (3.17) in (3.10) and then applying the dual field trick several times it is possible
to represent (3.10) as a single determinant of the sum of four matrices. This analysis is
completely analogous to thEX Z case treated in [22] so that we only state the result;

N
(| H C(3j) expla Q1(n)) H B()|0) = { [1re. Ak)}{ ]"[a(i,»d(i,,-)}(m detG|0)
J#k j=1

el j; expl2(hi) — @2(h;)) + expla + pa(he) — @3(h)))

G = t Gy i) + 1 G i) -
ri(Ag

rGy) (3.18)
) explpi(h;) — @10‘k))j|

ri(Ak

(s Ion
<In(r(k ) + Z In |:h(A A ;:|>
n=1 n»

n#j

|:t(/\k,)»)+t()»,,)»k)

where

1+ 2Scosh2x —iy)\?
1+ 25 cosh2x +iy)

and the commuting dual fields, are defined according to

@a(X) = pa(X) + ga (1) (Olga (%) = 0= pu(1)|0) 010 =1 a=1...4

ri(A) = a1(A)/di(A) = (

101 0 100 1 3.19)
010 1 0110 3.19
AN EY P GO RSE I L (CI7A)
10 1 1 011 1

wherea, b = 1...4. Here all terms not proportional 8 in G;; are understood in the sense
of 'Hospital for the diagonal elements. In the thermodynamic limit further simplifications
take place. Following the analysis for the norms above we exgressthe product of two
matrices7 and W

. 1 -~
G =—(siny)WJ Tk = 8x0k Wik = 8jx — @V(Ajv ) (3.20)

wheref; = —2r Lp(;) and

Siny)V(h, ) =t(r, ) +1(1, 1) (( ) explea(i) — @2(A)) + expla + g4(i) — p3(X))
[t(u,k)th(k ) 1((M)) exple1(X) —wl(u))]- (3.21)
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In the thermodynamic limi¥V turns into an integral operatc)fv =1+ %\7 acting as
1 - 1 +00
14 V) s fli= FO) + o / AV (o ) £ () (3:22)
2 27 J_o

where the integral kernel is obtained from (3.21) as (the arguments of the dual fields are
shifted by iz /2 which does not alter the defining commutation relations (3.19))

sy 1 ez (M)ea(u)
V. w = sinh(x — ) {sinh(k —u—iy)  sinh(x —p +iy)
-1
B e; (wei(d)
+ expla + @a(p) "’3(“)<sinh()\ —p+iy) | sinh(h —p — iy))}
(3.23)
with

1— 2Scosh2r +iy)\2 1— 2Scosh2x —iy)\?
A) = a2 A) = e
e2(%) (l — 25 cosh(2x — iy)> er®) 1—25cosh2xn +iy)

Putting everything together we thus find
(Ol det(1 + L V)|0)

Q Q) = =
(2] expla Q1(n))[€2) det+ £ £)

(3.24)

where 14+ %\7 and 1+ %I? are integral operators acting according to (3.22) and (3.5) with
kernels defined in (2.27) and (3.23).

4. Continuum limit

As mentioned in the introduction the purpose of the present work is to determine correlators
for the SG Quantum Field Theory, and the lattice model studied above is used merely as
a regulator for the UV divergences. We are therefore interested ioahgnuum limit of

the determinant representation (3.24). As mentioned above the SG Quantum Field Theory
is recovered from the lattice regularization by taking the lattice spacing toxem 0 and
simultaneously the bare massto infinity keepingmA = fixed [17]. In order to take the
continuum limit we now employ the following regularization for the integral operators in
(3.24): we restrict the integration for the integral operaterzjgﬁ to the interval FA, A],

and then takeA — 0 in such a way thas cosh2)) « 1 VA € [—A, A] (recall (2.2) for

the relation ofS and A). Using this regularization the;(1)’s simplify to

e2()) = exp(—ip sinh(2)) + @2 (X)) e1(A) = exp(ip sinh(2X) + ¢1(1)) 4.1)
where
C2 n—2y
p=-gh T sin(mA. (4.2)

Here we have used (2.29) and\ = x should be identified with the continuum distance.
The constant is given in terms of the physical soliton mass.

This regularization allows to embed the determinant (3.24) into a system of integrable
integro-differential equations which we shall need later to determine the subleading terms
in the asymptotic expansion of the correlation functions. With (4.1) the kernel (3.23) can
be brought into standard form [9]. We perform a change of variables exp(2)), and
replace the factorgsinh(A — o & iy))~t in (3.23) by an integration over an exponential.
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Then the transpose of the kernel (3.23) reads (up to a similarity transform which leaves the
determinant unchanged)

1 . i o 4 ' _
EV (21, 22) = - Zz/o ds ,; Ej(z2|s)ej(zals) 4.3)
where
e1(zls) = Nz exples(z))12, z, s)
Ei(zls) = —\/% eXp—¢3(2))(2, 2, 5|
1
ex(zls) = o 11, z,s)
Ex(z|s) ! (1 |
2Z|8) = —— VAR
\/]_E (4.4)
e3(zls) = N exp(—ipk(z) + ¢2(2))12, z, s)
E3(z|s) = —\/% expipk(z) — ¢2(2))(2, z, s|
ea(zls) = J% exXp(—ipk(z) — ¢1(2) + @a()IL, 2, 5)
Eq(zls) = JKZTT exp(ipk(z) + ¢1.2) — 3@ (1, 2, 1.
Here we use the notatiot(z) = %(z —z7Y, w=expliy), k = exp(3), and
11, z,s) = +/2z sin(y)explizws) = (2, z, s|
(4.5)

12,z,8) =+/22 Sin(y)exp(—i%s =(1,z,s|

are normalized in such a way that|l) = f0°° ds(1,z,s|1,z,s) = 1, and similarly
(212) = 1.
The inverse of the integral operatoHrlé VT is defined by

. 1 . 1 . .
A-Rx*(1+ =Vl )=1=(14+="VT)x1A-R)
2 2

4.6
Re(1e 2o7) w Ly o
- 2 2r

In terms of the functiong;(z|s), Fj(zls)

A= R)yxejl.o=fizls)  Ej* (1= R)los = Fj(zls) 4.7)
the kernel ofR can be written in a form similar to 4.3)
i [

Renz = 3 [ ds fas R, (4.8)

-z Jo

as can be seen by acting with + %\77) on (4.8).
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5. Integro-differential equations

Let us now derive integro-differential equations (IDE) determining the functj®ass) and
F;(z|s). The analogue of these equations in the case of impenetrable bosons proved very
useful for the anlysis of the corresponding RHP and we expect the equations below to play
a similar role for the problem at hand. To this end we consider derivatives with respect to
p and the integration boundary. For the A-derivatives we find

4 S
8Af;(z|s)+2/(‘) dr Uj(zls, 1) fi(z]t) =0
I=1

. (5.1)
InFj(zls) — Z/ dr Fi(z|)Uy(zlt,s) =0
1=1+0
where
2I62A A A e_ —21\ —2A
wmmo=;:ﬁﬁ@meénH- oo [IE P D). (5.2)
The p-derivatives of the functiong;(z|s) obey the IDE
- 150, 10
dtjl) = ( — k@[l + doIBY+= o R [OER
=1 z,8
1K 0 o 1 0
— Zc;k) Y [ —iBDPy = fi| — 5 ZCS} * fi (5.3)
=3 =1 z,8 k=3 z,8

where (s, t) = §;x8(s — ) and where the integral operataB$” andC™ are defined as

expA) g,
BY (s, 1) = / eI RN
exp(—2A) <
exp(2A) d (5'4)
Ci(s. 1) = f = £l Exzlo).
exp(—2A) <
We note the following relations between the integral operaajgé and Cj(,’j)
B(s.1) = C(s.1) (7 —iBO)j* [I +1CPly, = 88(s — 1). (5.5)

These identities can be easily proved by using (4.7). From now on we will reﬁ‘lﬁbe’n
all expressions by’y’. The IDE for F;(z|s) are found to be

4
o8 e1s) = (I P Gls) + > [0+ 2] )
! 4
S Y e
k= ; —
The ‘potentials’B™ and C™ obey the equations
4 4
jm mk - % Z Cj(,ln) * Z[[ — iB(l)]mI % CI(]:1+1)
m=3 =3 =

i n— n
—5Gi3+5)4) [c;k Vs, ) = Cris, 0

)(5j,3 +68;,4)

(5.6)

N

HMb

Fy#[I +iC%]y * By

.8

8,Ci (s, 1) = —3 Z Ciyxc

s,t s,



Correlation function of the sine—Gordon model 233

s,t:|

<8k3+6k DCT V.0 - Ci P (5.0 (5.7)

4 4 4

0 1 1

3B (s.1) = — %E: B" «C9 —%E > BV [1+iCP],, « By
m=3 n=3 [=1

4
+izc;;>>*c;;> By

5.t

s,t s,t

+f ' Gea+ 80a) [B;;Z‘” (s.) = By (s.1)

i Z B 4 CO }
s,

—5@-,3 +8.2[B Vs, ) — Bl V(s 0] (5.8)

(n+1) (€h]
+ B, xCy

s,

The derivatives with respect ta are given by
INCP (s, 1) = 28" f;(E2215) Fe (€M) + 2672 f (e 22 |s) F(e 22 |n)
INCY (5.1) = 2f;( € [$)(Fe(€ 1) + 1 Fy % Clen ) + A — —A
0rCP (5. 1) = 262 (€M) (Fu(@|1) +1Fy % CP v, + 1€ Fy % CPon ) (5.9)
+A —> —A
InBJ (5. 1) = 2F (€M) (f; (€ |s) —iBJ * filen ;) + A — —A.

Equations (5.1), (5.3) and (5.6) form a Lax pair. Their consistency is implied by the
following relation for the cross-derivatives

9,0 fi(zls) = 040, fi(z]s). (5.10)
In order to simplify the computations we first introduce some notation. We rewrite (5.3) as
i 4 1 4
Op fj(2ls) = —=52f;(215)(8;3 + 8;.4) + dapxfi| + - > b f (5.11)
=1 Z,8 =1 z,8
where
4 1cOs. 8 a—
aji(s, 1) = ZCJI (8j3+8j.4a— 83— d1.4)
1 4 (5.12)
bji(s. 1) = 56 18G5 = 1)+ 5B (3js + 8.0) = Z CRl =By,
=3
In the same notation (5.6) can be written as
1.8
0y F(zls) = sz (z15)(8j.3+ 8j.4) — ZF, wa| — =Y Fxby, (5.13)
=1 z,8 z =1 z,8
Similarly we introduce the notation
Ai(Als, t Aj(—Als, t
Uj[(Z|S,f) — jl( |S ) ]l( |S ) (514)

— e2A 7 — e72A

where A (Als, 1) = 2ie?* f;(€"|s) Fx(€?A|r). In what follows we will denote byA ;; (A)
the integral operator in the-variable with kernelA(A|s, 7). After some calculations we
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arrive at the following equations

. 4 7
1z A(A)m * m| ,5
I3y fi(215) = 5 2+ 8m>(2 Z_—ezf +A —A)

Za]l (Z Alm(i\)e::\fm + A = —A)

1

Zbﬂ (ZWMA_A)

m=1

+ Z OnGjm * fm

m=1

2,8

1
+- 8b-m*m

z,8

(5.15)
4 (0, AN jm * fules
9,00 15 (21s) = —Z( A 2 nles —A>
m=1 z-
. 4 A
1z AN)jm * fnlzs
+—= ”1:1(Zj_e2A + A — _A> (Bm,?, + 8111,4)
_ Z Z( A(A)]l —A) * (alm * fm + 1-blm * ﬁﬂ) (516)
Z z.8

=1 m=1

In order to equate (5.15) and (5.16) we first rewrite both equations in the @y« f,,,
where O are complicated integral operators, and then ‘truncate’ftfie from the resulting
expressions, which amounts to supposing that they form an independent set of functions
in the space the integral operators act in. In the next step we then compare the
resulting expressions (which are both meromorphic functions)ait the singular points

7z = 00,0, €A, If they (their residues) are equal at these points the expressions coincide
for all values ofz. Forz — oo we get the condition

i
aAajm(s’ t) = é(am,S + 6m,4 - 6j.3 - 8]‘,4)(Ajm(A|Sv t) + Ajm(_A|Sa t)) (517)

At z = 0 we obtain

4
ADjm (s, 1) = Z(eizA[Ajl(A) * by — bji % A (A)] + A — —A) (5.18)
=1 s,t
At 7z = €2* we obtain
i A
Oy Ajm(Als, 1) = S€" B3+ dna— 83— ) Ajm(Als, 1)
4
+ Z([ajl + e 2] * Apn(A) — Ajl (A) * [agm + €22 b)) (5.19)
s,t

=1

whereas the condition from = e 2" is obtained by taking\ — —A in (5.19). It is
straightforward to show that these equations hold by inserting the expressiansbfand
A and using the identities for the- and A-derivatives ofCj;’ and Bj;’ written above.

Finally, to relate the functional determinant in (3.24) to the quantities introduced above
we turn to the logarithmic derivatives of d&t+ %VT).

The derivative with respect tp is given by

1. o1
3,1n <det<l+ 27TVT>> =tr ((1 —R) * Znava> . (5.20)
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Using (4.4) we find that

x V7 (z1,22) = k) — M)

4
ds Z ej(z1]$) Ej(z2]s)
=3

27 21— 22
1<1+1)/wdi @IE . (5.21)
= = B A) ei(z1|8 i(Z2]8). .
2 2122/ Jo jzgj HR

This implies that

.01 .
1—-R)yx —9,VT
( )*an

1 [ 4 exp(2A) ‘ .
=f/ dsZ/ dz[a(zl_z)—R(m,z)]M
21,22 2 0 =3 e

XPp(—2A) <222

00 4
[ @Y . (6.22)
j=3
Using the representation (4.8) &f(z1, z2) we rewrite the r.h.s. as

1 [ 4 exp(2A) £
rhs =3 / ds Z/ dz [8(z1 — 2) — R(z1, z)]M
2Jo k=3’e

XP(—2A) 7122
2 [T sos [T G0 Fieln els) Exals)
_é A s A IZZ |z .
k=3 1—=1 Y exp(—2A) 12 72
00 4
+1 f ds Y fi(zals) Ej(zals). (5.23)
0 =

Using this with (5.4) in (5.20) we finally arrive at

1 . 1 4 ) ) 4
dpIn (det<1+ 27TVT>> =5 E / ds [C;Sf)(s,S) +CF (s,9) =i E B x C
k=370

=1

.v,.v]

(5.24)

The logarithmic derivative of the determinant with respeci\tds

ENY <det<1 + % W)) =26’ R(e:, €M) + 2 2 R(e7% @72, (5.25)
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After some manipulations similar to the case of the Bose gas (see [9]) this can be rewritten
as

ie72A
2

4 o0 d
R, &) = J;/O dst(eZA|s)d—Aﬂ(eZA|s)

a—4A

4 00
£ A 2M oy o (e2A

4 00

x[Z / dtﬁ(ez"lt)ﬂ(e‘z"lt)]
=170

ie?A

2;/0 ds Fj(e72"s) o - i€ *1s)
e ; OQd (€M |s)Fi(e™?
_25inr'(2A)[Z/0 s fj (€77 [s) Fi( IS)}

j=1

4 0o
x[;/o drﬁ(e—zﬂr)me“u)].

This embeds the determinant into the system of integrable integro-differential equations
derived above.

(5.26)

R(e—ZA’ esz) —

6. The Riemann—Hilbert problem

In this section we show that the results of the previous section can be reformulated in
terms of an infinite-dimensional RHP for an integral operator valued fundfign. This
connection will enable us to determine the asymptotic behaviour of the correlation function.
We introduce the conjugation matri(z) of this RHP as

[G(z]s, t)]ij =6;j0(s — 1) + 2w (z]s)E;j(z]t). (6.1)
It's elements can be expressed in terms of the projectors (4.5), e.g.

[G(zls. D]11 = 8(s — 1) — k* exPlea(z) — ¢3(2))2. 2, 5)(2, 2. 1]
[G(Z|Sa t)]12 = KeXFX(P4(Z))|2, 2, S><17 <, tl

Consider now an integral-operator valued functibtz) with kernel Y (z|s, 1), j. k =

1,...,4,s5,t €[0,00) acting on a vectorf of functions ofz ands according to
00 4
@ f@l = [ d Y Vels. 0. (6.2)
0 k=1

Y (z) is solution to the following RHP

. Y(z)=I+Z,f°:1% for z — oo.

e Y (z) is analytic throughout the complex plane with the exception of the cor@our
which is the interval [exp-2A), exp(2A)] on the real axis (see figure 1).

e Y (z) = YT (2)G(z) on C whereY*(z) are the boundary values as indicated in
figure 1 andG(z) is the conjugation matrix (6.1).
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Im(z)
A

+ C(2)

Figure 1. Conjugation contour for the RHP.

This RHP can be rewitten as the system of singular integral equations
1 o YT - G
Y+(Z)=I+7'/\ dZ/ (Z )[ -(Z )]
27l J_o 77—z —10
The solution of (6.3) can be expressed in terms of the functtbaad f defined in section 4
as

(6.3)

exp(2A) (A NSVE: (2
Y (zls, 1) = 8,;8(s — 1) + i/ g HEWEE1D 64
exp(—2A) 7/ —z—10
which follows from the identity
fi(zls) =/ dr Yix(zls, t)e;(z|t). (6.5)
0

The potentialB® andC®™ (5.4) can be related to the solutidtiz) of the RHP through
asymptotic expansions around 0 asd We find

Yie(@) — 1 +iCP +izC? +iz°C® + 0%  forz -0 (6.6)
i

Yie(z) — [ — -C? + O0(z7?) for z — oo. (6.7)
Z

From (6.6) and (5.5) we find
[[ —iBDP]xC? = —i(Y-l(O)E Y (2)). (6.8)
dz z=0

Together with (5.24) this expresses the correlation function (3.23) in terms of the solution
Y (z) of our RHP.

6.1. Analysis of the RHP

While the operator-valued RHP defined above determines the correlation functions
completely, its solution appears to be a daunting task in general. In what follows we
concentrate on the leading term in the asymptotical decomposition of the solution of the
RHP in the region of coupling constaft < y < % The reason for this restriction is

the following: the upper bound op stems from the construction of the ground state of
our lattice regularization. The lower bound ensures that the paramedefined in (4.2)

will go to infinity in the continuum limit, which essentially simplifies the analysis of the
RHP: it permits us to study the asymptotical decomposition of the solution of the RHP with
respect top (recall thatp contains the continuum distance as well). Due to the fact that
this parameter will be not only large but diverge the number of terms in the asymptotical
decomposition will be very small—in fact we expect only three contributions (see also

below). As we shall show in our analysis of the leading contribution, the special form of
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the conjugation matrix in addition to our interest in partial trace¥ oinly allows to reduce
the RHP to a tractable scalar one (still containing the auxiliary dual fields, of course). The
analysis of the subleading terms is technically much more involved and is currently under
investigation. We will report on this work elsewhere.

Let us now turn to the calculation of the leading term. First, we note that the conjugation
matrix can be decomposed into the product of an upper and lower triagonal matrix as follows

4 00
[Gzls, D]uwp = Z/ ds’ [T1(zls, $)]ac[T2(z]s", D]ep. (6.9)
c=1 0

Here

1 ou(zls, 1) ao(zls, 1) explipk(z)) aa(zls, 1) explipk(z))

10 1 aq(zls, 1) explipk(z)) as(zls, t) explipk(z))

Ti(z|s, t) = 0 0 1 as(zls. 1) (6.10)

0 0 0 1
with matrix elements

Kk exXplea(z))
AR = explpata) — galen
1
052(Z|S» t) = _; eXFX_‘/)Z(Z) + §03(Z))|21 Z, S><27 Z, t|
K2 explp(z) — pa(z) + @a(z))
b e 21 : 17 9
) = P expla(e) — ey T (6.11)

1
aa(zls, 1) = — 2 exp(—@2(z) + ¢3(z2) — wa(2)I1, z, 5)(2, z, t|
Kk exple1(z) — ¢3(2))

D = explga(a) — ol
_ kexplez(z) + ¢1(z) — ¢3(2))
) = P explpn(a) — gty Y
Similarly, we find
c1(zls, t) 0 0 0
Ba(zls, 1) ca(zls, 1) 0 0

LESD=1 g 15 1) exp—ipk(z)) Pa(zls. 1) exp—ipk(z)) cszls.t) O

B3(zls, t) exp(—ipk(z)) Ps(zls, 1) exp(—ipk(z)) Pe(zls.t) calzls, 1)

(6.12)
The matrix elements of, are given by
1
IBl(Z|S1 t) = _; eXFX_</)4(Z))|1, 2, S)(2, 2, t|
Kk explg2(z) — ¢3(2))
=— 2 2

Pl D = 1 P explga(a) — o)

53(Z|S’ t) = _KZ eXFX_(Pl(Z) - (P3(Z) + §04(Z))|17 2y S><27 <y ll (613)

Batels, =~ SR2D)p

1+ k2 explpa(z) — ¢3(z))
Bs(zls, 1) = k exp(—¢1(z) + @a(2)I1, z, )(1, 2, ¢
Be(zls, 1) = —k €XP(—¢1(z) — @2(2) + @a(2)L, 7, $)(2, 2, 1
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Y(z)

2IN
(<]

Figure 2. Deformation of the conjugation contour for the RHP.

and finally

K2 explpa(z) — ¢3(2))

_ . 12)(2|
14+ k2 exp(pa(z) — ¢3(2))

ci(zls, ) =1

1
calzls, ) =1+ 2 exp(—¢a(z) + ¢3(2))11)(1

1
_ 5 12)(2|
1+ k2exp(pa(z) — ¢3(2))

ca(zls, 1) = 1+ k? exploa(z) — ¢3(2))|1) (1]

(6.14)

ca(zls, 1) =1

Let us now go through a ‘deformation’ of the RHP like for the case of the Bose gas
[28]. We define an integral-operator valued functib() in the following way:

e Y(z) = Y(z) outside the ‘bubble’ defined in figure 2. In particulﬁ(z) = Y(z) for
z — 0, co, which will be important later.

e Y(z) = Y(2)T1(z) in the region enclosed by the real axis and the confourNote
that in this region Ink(z) > 0 Vz.

e Y(z) = Y (2)[T»(z)] ! in the region enclosed by the real axis and the coniour
Note that in this region Imi(z) < 0 Vz.

It can be easily seen that the functi®iiz) defined in the above way has the following
properties:Y (z) is analytic in the whole complex plane with the exception of the contours
I'; andT'2. On the contours’; Y satisfies the conjugation equations

V)~ —_yt
(If) (z) = 15 (2)T1(2) zely (6.15)
Y) (2) =Y (2)T2(2) z el

Since we are only interested in the asymptotic behaviour of the determinapt$od we
can use the fact that in this limft,, become blockdiagonal in the vicinity of the contour
12 from which we find that

(%) 0
Y(2) ( ; &)Z(Z)>. (6.16)

Here &>, (z) are solutions to % 2 operator-valued RHPs

P (z) = D/ (2) * G;(2) j=12 (6.17)
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with the same conjugation contodr as the original RHP and conjugation matrices

Gy — (1-12@ 0\ 0 SRR 2)(1
1) = 0 1— 1)1 _EXD(—KWA(Z))H) 2 1+ eXD(W3(i)2—¢4(Z)))|1><1|

_(1-12@ o0
Gz(z)—( 0 1_|1><1|)

+< 0 K explp1(z) + ¢2(2) — ¢3(Z))I2>(1I>
—k eXP(—@1(2) — 2(2) + a1 (2] (L+ k2 exppa(z) — gs(NI(] )
(6.18)

Using the fact thaiG;(z) form representations offL(2|C) we can now calculate the
determinants ofG;(z) as is shown in the appendix

det(G1(z)) = exp(—a + ¢3(z) — ¢a(z)) det(G2(z)) = expla — ¢3(z) + ¢4(z2)).

(6.19)
The scalar RHPs for the determinants
det(®; () = det®; (2)) dei(G,;(z))  j=12
is now easily integrated to give
~ 1 exp(2A) _ ) — :
detds (2)) = eXp( L[ gy Tt <p4(21))
exp(—2A) 1—
(6.20)
~ 1 exp2A) _
detd,(2)) = exp( _ 1 / 4o, @~ 930+ m(zl))_
2701 Jexp—24) 21—z

7. Leading term in the asymptotics of the correlator

Let us now relate the solution of the scalar RHPs to the logarithmic derivative of
det1 + ;- V7). The contribution due t&C© in (5.24) can be obtained from (6.7) and
(6.20) as

1 ; > 0) . iz N
> ;/0 ds Cpi (s, 5) = ZII_)mOO > In(det(®,(z)))
1 pexnea)

= dz [a — ¢3(2) + @a(2)]. (7.1)
T Jexp(—2A)

Similarly, the second contribution in (5.24) is with (6.7)

1&, [ i d
- _inr@® 2 -
2;3/0 ds ([ —iBP] % CP)(s, s) 5 3%

1 [exm2h)

In[det(®2(z))]
=0

7=

a4 % 03(2) + @a(2)
Z .

. (7.2)

4 exp(—2A) Z

Combining these to the leading asymptotical behavious,dh(det(1 + %\Aﬂ)) and using
the fact that they ar@-independent we obtain

det<1+ 1\7T> = Aexp(al)SInHZA))
2 b4

exp(2A) 1
x exp(" / dz (1 + 2) (Pa(z) — ws(z»)
4 exp(—2A) Z
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A

—A exp(‘xPSi?:](ZA)) exp(i / ) cosh2h) (ga(h) — <p3(,\))) (7.3)
—A

where A is a p-independent constant and where in the last step we have changed back to
the original A-variables. Decomposing the combination of dual fields into ‘momenta’ and
‘coordinates’ and using the commutation relations (3.19) we find

@a(A) —3(h) = P(A) + Q1) [Q(w), P(M)] =0. (7.4)

This enables us to trivially evaluate the expectation value with respect to the dual fields in
this approximation: the dual fields are found not to contribute at all leading to the following
result for the leading asymptotical behaviour of the correlator

(Q] expl@ 01(n))|Q) ~ A exp(o;—p sinh(2A)> (7.5)

where A is a constant independent gn

We will now argue that the approximation (7.5) is too crude due to the fact that we
have neglected the influence of the dual fields inghbleadingfactors in the solution of
the RHP. We expect the final answer for the solution of the RHP to be of the form

L inh(2A
det<1+ 2an) = C{g;}) expc({g;}) In(p)) eXP<OmSI?:“>

A
X exp(i / dr cosh2h) (pa(r) — <p3()»))> (7.6)
—A

where we keep in mind thgt — oo as the lattice spacingh — 0. In (7.6) C is p-
independent and we have conjectured that the subleading term in the solution of the RHP
is a power-law inp. Evaluating the expectation value of (7.6) in the dual bosonic Fock
spacethe dual fields will contribute in the exponential terie.

- 1 -
(expla Q1(n))) ~ (O] det(l + o VT> |0)

= C pf explinp) expép In(p)) exp([smr}f[\) + wi| ap) ) (7.7

Here ¢, » and s are functions ofy, the soliton mass etc. For this answer to be of the
correct qualitative form, the following conditions have to be satisfied:

e £ =0, as the leading asymptotic behaviour should be@mstantp).

e The last factor in (7.7) has to be cancelled by a suitable regularization procedure for
the result to make sense. In the continuum limit we have (3.2) which implies that

A 2y
We see that this expression contains a divergent factor depending bethaod on the

distancex. We now adjust our ‘cut-off'A in such a way that the divergent factor in (7.7)
precisely reproduces the divergent factor in (7.8), i.e.

exp(ozﬂz_yy> = exp([smrf[\) + a):| oep) )

If w = 0 this leads to the following relation between the ‘cut-off'and the lattice spacing
A

(expla 01(n))) — <exp<2;[u(x) - u(O)])> x exp(ax T V) . @8

(7.9)

exp2A) = A2
b (Czsin(y)y

8 (mr — V))
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with a finite constant. The procedure outlined above fixes the relation betweeand A
and thus between the divergent partpfand A. Note, however, that the result (7.9) for
this relation is not consistent with the requiremémtosh21) « 1, which we have used in
order to simplify the kernel of/ in section 4. Therefore the assumptien= 0 has to be
wrong and we do need A-dependence ab instead which corrects (7.9).

8. Summary and conclusion

In this paper we have applied the method of [9] to correlation fucntions in the sine—
Gordon model. In order to deal with the ultraviolet divergences we used an integrable
lattice regularization of the sine—Gordon model to derive a determinant representation for
guantum correlation functions. We then took the continuum limit and obtained a determinant
representation for the sine—Gordon QFT. Furthermore we embedded the determinant in
a system of integrable integro-differential equations which we showed to be associated
with an operator-valued RHP. The quantum correlation function was expressed in terms
of the solution of this RHP. We then presented a general approach to obtain the leading
asymptotical behaviour of the solution of the RHP, which in turn yields the leading term
in the asymptotics of the quantum correlation function. We showed that the subleading
terms in the asymptotical decomposition are essential for obtaining explicit expressions for
the asymptotics of the correlation function due to the presence of the dual quantum fields.
For the case at hand there appear to be only two subleading terms in the asymptotical
decomposition which is very encouraging! The analysis of the subleading terms is a difficult
mathematical problem by itself and we will report on it in a separate publication.
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Appendix. G1(2|C) Representation by integral operators

In this appendix we show how to essentially simplify the analysis of the operator-valued
RHP through the use aff L(2|C) representation theory. We closely follow the discussion
of [28].

Let us consider an integral-operator valued 2 matrix with kernel

_ ( Ouls, 1) O12s,1)
O(s, t) = <(921(s, 1 Ols, t)) s, t € [0, 00). (A.1)

Multiplication of integral-operator valued matricésandP is defined in the usual way as

2 )
P60 =Y. [ &Ous Py =12 (A-2)
k=170

The left (right) action of the integral operatafs; on fuctions defined on the interval,[6o)
is given by

O, * fls = /O & O, DFE)  gxOyl = /0 ds £(5)0, (s, 1). (A3)
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Let us now construct a special class of such oper&fbmhich form a representation of
Gl(2,C): we start with two pairs of functionsx(s), 8(s)) and (A(s), B(s)) on [0, co)
which we represent in Dirac notation ags) = |1), B(s) = |2), A(s) = (1] andB(s) = (2.
These functions are chosen in such a way that

11) = / ds A(9)a(s) =1=(2]2) = / ds B(s)B(s). (A.4)
0 0
In this notation we may write left multiplication b§;, as
Oull) = / dr O (s, D (2). (A.5)
0

Observe now that one may define a representaﬁonf GI(2,C) in terms of integral
operators via

R & Y 0 M| 1) (1] M12]1)(2|
Me G2 C) — A = ( o I- |2><2|) - <M21|2><1| Mzz|2><2|)‘

(A.6)

Here M13, M1s, M»; and M5, are complex numbers andis the identity operator in the
space of integral oprators on,[80). Multiplication by the integral operatotd) (1|, |1)(2|,
|2)(1] and|2)(2] is given by e.g.

112 f(s) = (/0 ds B(S)f(S))Il)- (A7)

Thereforeli)(j| act like projectors on the ‘state§’) and (j|.
In particular identities like [ — [1)(1/]|1){(1] = O are seen to hold. Indeed for any,
N € GI(2, C) the representationl has the following properties

Py AMN) =AMAN) A =1  AMY =AM

(P2 Tr (A(M) - (1 - l)l“l' I— |02> 2] )) =tUM = Mu+ Mz (A.8)

(P3 DetA(M) = detM = M11May — MyoMo.

Properties (P1) and (P2) can be established by direct computation using the rules given
above. Property (P3) shows that the determinant of the integral opetatosimply equal
to the determinant of the ® 2 matrix M, which is quite remarkable. It is established by
expressing the determinant as a traigeln Det.A = trin A4, then using (P1) in the expansion
of the logarithm, using (P2) to express the operator trace in terms of the matrix trace, and
finally expressing the sum over traces back as determinant of the matrix

It can be easily checked that the representation (6.18) of the conjugation méiyices
is precisely of the above form (heteplays the role of a parameter), which in turn allows
us to evaluate the determinants of the conjugation matrices.
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