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Abstract. We consider a completely integrable lattice regularization of the sine–Gordon model
with discrete space and continuous time. We derive a determinant representation for a correlation
function which in the continuum limit turns into the correlation function of local fields. The
determinant is then embedded into a system of integrable integro-differential equations. The
leading asymptotic behaviour of the correlation function is described in terms of the solution of
a Riemann–Hilbert Problem (RHP) related to the system of integro-differential equations. The
leading term in the asymptotical decomposition of the solution of the RHP is obtained.

1. Introduction

The sine–Gordon model is completely integrable (exactly solvable) both on the classical
and on the quantum level [1–7]. We shall write the sine–Gordon equation in the following
form:

∂2

∂t2
u(x, t) − ∂2

∂x2
u(x, t) + m2

β
sinβu(x, t) = 0. (1.1)

Herem is a mass,β is the coupling constant. For later convenience we also introduce

γ = β2

8
.

In the classical caseu(x, t) is a function of two variables,x and t are space and time
coordinates. In the quantum caseu(x, t) is a local quantum field of the sine–Gordon model.
The Hamiltonian reads

H =
∫

dx

(
1

2
p2 + 1

2
(∂xu)2 + m2

β2
(1 − cos βu)

)
. (1.2)
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Momentum and topological charge are given by

P = −
∫

dx p∂xu Q = β

2π

∫
dx ∂xu. (1.3)

Here p(x, t) = ∂tu(x, t) and u(x, t) satisfy Poisson brackets{p(x), u(y)} = δ(x − y).
Equation (1.1) has a Lax representation and a classicalr-matrix [1–6]. After quantization,
the fieldsu andp satisfy canonical commutation relations [u(x), p(y)] = iδ(x − y). The
physical ground state|�〉 of the quantum system can be obtained by filling the Dirac sea
of negative energy pseudoparticles [7].

Let us now consider the quantum operator

exp(αQ(x)) = exp

{
αβ

2π
(u(x) − u(0))

}
Q(x) = β

2π

∫ x

0
dz ∂zu(z) (1.4)

whereQ(x) measures the topological charge on the interval [0, x]. In this paper we show
how to represent the correlation function

〈�| exp(αQ(x))|�〉 (1.5)

as the determinant of an integral operator (in fact we shall see below, that the coefficient
α in (1.5) needs to be renormalized). Note that via differentiation with respect toα we
can obtain correlation functions of local quantum fields from (1.5). We shall consider the
quantum version of (1.2) in the regionπ2 < γ < 2π

3 (many of our intermediate results hold
in larger regions of coupling constant). Note thatγ → 0 is the quasiclassical region of the
sine–Gordon model and atγ = π/2 the spectrum of the Hamiltonian is equivalent to free
fermions. To deal with the ultraviolet divergences of the continuum model we shall employ
a suitably chosen lattice regularization.

The determinant representation then permits us to describe the correlation functions
in terms of a system of integrable integro-differential equations. These equations can be
solved by means of a Riemann–Hilbert problem (RHP) which in turn enables one to obtain
elementary formulae for the asymptotics of the correlation functions. This program has first
been applied to the nonlinear Schrödinger equation in [8] and is described in detail in the
book [9] (see also [10]).

There has been previous work on determining correlation functions in the sine–Gordon
model. Form factors were determined by Smirnov in [11, 12]. At the free fermionic point
γ = π/2 a determinant representation of the correlation function (1.5) has been constructed
using the coordinate Bethe ansatz in [13]. A description of a different correlator at the free
fermionic point through a Fredholm determinant (derived from a form factor sum) which in
turn satisfies an integrable differential (sinh-Gordon) equation has been obtained in [14]. In
this paper we start the investigation of correlation functions in the sine–Gordon model for
generalγ , in particular away from the free fermionic point in the framework of its solution
[15, 16] by means of the quantum inverse scattering method (QISM).

The plan of this paper is as follows: in section 2 we review the integrable lattice
regularization of the sine–Gordon model introduced in [16]. The algebraic Bethe ansatz
is formulated and the construction of the ground state [17] is discussed. In section 3
we derive the determinant representation of the correlator (1.5) for the range of coupling
constants stated above. As this part of the analysis is very similar to the analogous problem
for the spin-12 HeisenbergXXZ model (which was treated in full detail in [22]) we omit
many details and only give an account of the main steps without providing proofs (which
can be found in [22]). In sections 4 and 5 we embed the determinant representation into
a system of integrable integro-differential equations and in section 6 the related RHP is
formulated and the leading asymptotic behaviour of the correlation function is extracted.
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2. Lattice sine–Gordon

2.1. L-operator

We shall consider a lattice version of the sine–Gordon model which is also completely
integrable. It will have exactly the samer-matrix (both in the classical and quantum case)
as the continuous model. The elementaryL-operator of the LSG model is [15, 16]

L(n|λ) =
(

e−iβpn/8ρne−iβpn/8 1
2m1 sinh(λ − iβun/2)

− 1
2m1 sinh(λ + iβun/2) eiβpn/8ρneiβpn/8

)
(2.1)

Here 1 is the lattice constant andpn, un are the dynamical variables on siten of the
lattice. In the quantum model they obey canonical commutation relations [un, pm] = iδnm.
Furthermore, we have introduced

ρn = (1 + 2S cosβun)
1
2 S = ( 1

4m1)2. (2.2)

The symmetries of theL-operator of the LSG model are expressed by the identities (the
asterisk means Hermitian conjugation of the quantum operators)

σyL∗(n|λ̄)σ y = L(n|λ) σ zL(n|λ)σ z = L(n|λ + iπ). (2.3)

Its quantum determinant [15, 16] is

det
q

L(n|λ) ≡ 1 + 2S cosh 2λ. (2.4)

The L-operator (2.1) satisfies the Yang–Baxter equation

R(λ, µ)(L(n|λ) ⊗ L(n|µ)) = (L(n|µ) ⊗ L(n|λ))R(λ, µ). (2.5)

R(λ, µ) in equation (2.5) is the standard sine–GordonR-matrix given by the following
expression:

R(λ, µ) =


f (µ, λ) 0 0 0

0 g(µ, λ) 1 0
0 1 g(µ, λ) 0
0 0 0 f (µ, λ)

 . (2.6)

Here

f (µ, λ) = sinh(µ − λ − iγ )

sinh(µ − λ)
g(µ, λ) = −i

sinγ

sinh(µ − λ)
. (2.7)

In different sites of the lattice the matrix elements ofL commute. As usual in the QISM
we define the monodromy matrix by taking products of theL-operators in matrix space:

T (λ) = L(L|λ)L(L − 1|λ) . . .L(1|λ) (2.8)

whereL is the number of sites in the lattice which we take to be even. By construction
this operator also satisfies a Yang–Baxter equation

R(λ, µ)(T (λ) ⊗ T (µ)) = (T (µ) ⊗ T (λ))R(λ, µ). (2.9)

It might be interesting to point out that the entries fo theL-operator (2.1) form a
representation of a quantum group: The operators (we suppress the site indexn)

S+ = 2

i sinγ m1
eiβp/8ρeiβp/8

S− = −2

i sinγ m1
e−iβp/8ρe−iβp/8

S0 = e−iβu/2 S1 = eiβu/2
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satisfy the commutation relations of the quadratic (Sklyanin) algebra

[S+, S−] = 1

q − q−1
((S0)2 − (S1)2) [S0, S1] = 0

S± S0 = q∓1S0S± S± S1 = q±1S1S±

with q = exp(iγ ). For q being a root of unity this algebra has finite dimensional cyclic
representations: for rational values of the parameterγ /π = Q/P the quantum operators
entering theL-operator can be written as 2P × 2P matrices with elements

χ = eiβu/2 → δabeiπ(a−1)/P π = eiβp/4 → δa+Q,b a, b = 1, . . . , 2P, a + 2P ≡ a.

The definition of theL operator alone does not determine a definite lattice model: in
addition the Hamiltonian of the lattice sine–Gordon model needs to be specified. For this
choice there exist several different possibilities (see [15, 16, 18]). All of them are completely
integrable and can in fact be diagonalized simultaneously. Furthermore, all of them have
the same continuum limit (1.2). They differ from one another by higher orders in the lattice
spacing1. While all of them can be considered equivalently as a lattice regularization of
the continuum model we shall show below, how auniquelattice Hamiltonian can be chosen
by requiring that it has the ‘same’ ground state wavefunction as the continuum model. This
choice of the Hamiltonian will bring the dynamics of the lattice model as close as possible
to that of the continuum model.

2.2. Algebraic Bethe ansatz for the lattice sine–Gordon model

We shall consider the monodromy matrix (2.8)

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
. (2.10)

As a direct consequence of the Yang–Baxter equation (2.5) forT (λ) the trace of the
monodromy matrix, the so-called transfer matrix

τ(λ) = traceT (λ) = A(λ) + D(λ) (2.11)

commutes for different values of the spectral parameterλ, i.e. [τ(λ), τ (µ)] = 0. Hence,
it is the generator of commuting integrals for the system which are diagonalized by the
algebraicBethe ansatz. The starting point is the ‘pseudo-vacuum’ (or reference state). To
construct this simple eigenstate ofτ(λ) we combine theL-operators in pairs:

L̂(n|λ) = L(2n|λ)L(2n − 1|λ) ≡
(

αn(λ) βn(λ)

γn(λ) δn(λ)

)
. (2.12)

Choosing

〈u|0〉n =
{

1 − 2S cos
β

2
(u2n + u2n−1)

}− 1
2

δ

(
u2n − u2n−1 − β

4
+ 2π

β

)
(2.13)

(for rationalγ /π = Q/P the δ-function can be replaced by a Kroneckerδ-symbol and|0〉n
will become normalizable) we find from (2.12)

γn(λ)|0〉n = 0

αn(λ)|0〉n = {1 + 2S cosh(2λ − iγ )}|0〉n
δn(λ)|0〉n = {1 + 2S cosh(2λ + iγ )}|0〉n.

(2.14)
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Now we can follow the standard steps of the algebraic Bethe ansatz. As a consequence of
(2.14) the ‘global pseudo-vacuum’

|0〉 =
L/2∏
n=1

|0〉n (2.15)

is an eigenstate of the operatorsA(λ) andD(λ) (and hence the transfer matrix (2.11)) with
eigenvaluesa(λ) andd(λ), respectively:

a(λ) = {1 + 2S cosh(2λ − iγ )} L
2 d(λ) = {1 + 2S cosh(2λ + iγ )} L

2 . (2.16)

More eigenfunctions of the transfer matrix are found by acting with the operatorB(λ) on
the pseudo-vacuum

N∏
j=1

B(λj )|0〉 (2.17)

provided that the{λj } satisfy the Bethe ansatz equations(
1 + 2S cosh(2λj − iγ )

1 + 2S cosh(2λj + iγ )

)L
2

= −
N∏

k=1

sinh(λj − λk + iγ )

sinh(λj − λk − iγ )
. (2.18)

The corresponding eigenvalue of the transfer matrix (2.11) is

3(λ|λj ) = a(λ)

N∏
j=1

f (λ, λj ) + d(λ)

N∏
j=1

f (λj , λ) (2.19)

wheref (λ, µ) has been defined in (2.7).
The numberN of the Bethe ansatz rootsλj can be identified with the topological charge

(1.3). The correct lattice version in the quantum case is

Q = 4

β

L/2∑
n=1

(u2n − u2n−1) + L
π − γ

2γ
. (2.20)

The difference in the coefficient compared to (1.3) is related to the fractional charge of the
excitations. In [19] it was shown that the fractional charge appears due to the repulsion
beyond the cut-off in the process of ultraviolet renormalization. Equation (2.20) is the
number operator for particles

Q

N∏
j=1

B(λj )|0〉 = N

N∏
j=1

B(λj )|0〉.

One can prove that (hereσ z is the Pauli matrix in the matrix space)

[Q, T (λ)] = 1
2[σ z, T (λ)].

Now we can discuss our choice of the lattice Hamiltonian for the lattice sine–Gordon
model. As mentioned above we want to construct a lattice version resembling the dynamics
of the continuum model as closely as possible. According to the standard quantization of
the sine–Gordon model the ground state of the continuum model contains no bound states
(strings).

For possible lattice models we shall concentrate on the two integrable models introduced
in [15, 16, 18]. The latter has been constructed by Tarasov, Takhtajan and Faddeev (TTF)
such that it contains interactions of nearest neighbours on the lattice only. The ground state
for this Hamiltonian was found in [20]: in addition to a Dirac sea of elementary particles it
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contains bound states. In the continuum limit the density of the bound states vanishes, thus,
reproducing the known results for the continuum model. Apart from the Hamiltonian the
QISM yields higher integrals of motion. These describe interactions over larger distances.
Adding these interaction terms to the TTF Hamiltonian with coefficients vanishing in the
continuum limit1 → 0 producesdifferent lattice Hamiltonians with thesamecontinuum
limit while preserving integrability. This is the origin of the freedom in choice of the lattice
hamiltonian.

Another Hamiltonian for the lattice sine–Gordon model has been introduced in [15, 16].
The corresponding ground state for this Hamiltonian has been constructed by Bogoliubov
[17]: he was able to prove that in the intervalπ/3 6 γ 6 2π/3 the ground state is built
from elementary particles only—just as in the continuum model. Furthermore, he found that
the set of observable excitations coincides with the continuum model. Hence, unlike the
situation in the TTF model no phase transition is met in performing the continuum limit. For
the reasons stated above we choose this Hamiltonian for our studies of correlation functions.

It is given in terms of trace identities. Expressing the zeroesd(κ±) = 0 anda(ν±) = 0
of (2.16) as

e2κ± = −b±1e−iγ e2ν± = −b±1eiγ whereb = 2S

1 + √
1 − 4S2

(2.21)

(λ± = 1
2(iπ ± ln b) are the zeroes of the quantum determinant (2.4) ofL). The Hamiltonian

of the lattice sine–Gordon model considered here is given by

HLSG = − m21

32b sinγ

{
eiγ

(
∂

∂λ
ln

τ(λ)

a(λ)

)
λ=κ+

− e−iγ

(
∂

∂λ
ln

τ(λ)

a(λ)

)
λ=κ−

+ e−iγ

(
∂

∂λ
ln

τ(λ)

d(λ)

)
λ=ν+

− eiγ

(
∂

∂λ
ln

τ(λ)

d(λ)

)
λ=ν−

}
. (2.22)

This is the model studied in [15, 16]. From (2.19) one finds that (2.17) are eigenfunctions
of this Hamiltonian with energy eigenvalues given by

HLSG

N∏
j=1

B(λj )|0〉 =
( N∑

k=1

h(λk)

) N∏
j=1

B(λj )|0〉 (2.23)

with the single particle energies

h(λ) = m21

32bi

{
eiγ

sinh(κ+ − λ) sinh(κ+ − λj − iγ )
− e−iγ

sinh(κ− − λ) sinh(κ− − λ − iγ )

− e−iγ

sinh(ν+ − λ) sinh(ν+ − λ + iγ )
+ eiγ

sinh(ν− − λj ) sinh(ν− − λ + iγ )

}
.

(2.24)

In the continuum limit1 → 0 (which is reached by lettingb → 0 here) one immediately
reproduces the result [7]

h(λ)|1→0 = 1
2m21 sinγ cosh 2λ

for the single particle dispersion of the continuum model.
To find the solution of (2.18) corresponding to the ground state of the model it is

necessary to classify the possible configurations ofλj in the complex plane according to the
so called string hypothesis [21]. The details of this are not important in the present context.
It was found by Bogoliubov [17] that the ground state of (2.22) is obtained by filling all
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permitted states of pseudoparticles with rapiditiesλj on the line Imλ = π/2. Taking the
logarithm of equation (2.18) in such a state one obtains

L

2
p

(
λj + i

π

2

)
= 2πQj − i

∑
k

ln

(
sinh(λj − λk + iγ )

sinh(λj − λk − iγ )

)
. (2.25)

Here theQj are distinct integers characterizing the state uniquely and

p
(
λ + i

π

2

)
= −i ln

(
1 − 2S cosh(2λ − iγ )

1 − 2S cosh(2λ + iγ )

)
.

In the thermodynamic limit the densityρ(λj ) = 1
L
∂Qj/∂λj is then given in terms of the

integral equation

1

2
p′

(
λ + i

π

2

)
= 2πρ(λ) +

∫ +∞

−∞
dµ K(λ − µ)ρ(µ) (2.26)

where

K(λ) = − sin 2γ

sinh(λ + iγ ) sinh(λ − iγ )
= −2 sin 2γ

cosh 2λ − cos 2γ
. (2.27)

This integral equation can be solved by Fourier transform resulting in (3 = − ln b)

ρ(λ) = 1

4π

∫ ∞

−∞
dk e−ikλ

sinh 1
2k(π − γ )

sinh 1
2kγ cosh1

2k(π − γ )
cos

1

2
k3. (2.28)

Similarly one can compute the excitation energies. This is useful to find the correct mass
renormalization formula. To perform the continuum limit of the sine–Gordon model one
should let1 → 0 and simultaneouslym → ∞ as

m = constant1−γ /π . (2.29)

3. Algebraic formulation of correlation functions

For the evaluation of the correlation function (1.5) we shall make extensive use of the
similarity (in the framework of the QISM) of the LSG model with the spin-1

2 XXZ

Heisenberg chain which is derived from a monodromy matrix satisfying a Yang-Baxter
equation with the sameR-matrix (2.6) as the present model. The correlation functions
corresponding to (1.5) in theXXZ model have have recently been studied in [22, 23].

First we note, that the symmetry of theL operator (2.3) implies for the ground state
configuration consisting of rapidities{λ̃j = λj + iπ/2} with real λj

(B(λ̃j ))
† = C(λ̃j ).

In order to express the correlation function (1.5) in the algebraic framework outlined above
we first need to define the lattice analogue of the operatorQ(x) in (1.4). The correct
expression is found to be

Q1(n) = 4

β

n/2∑
k=1

(u2k − u2k−1) + n

(
π − γ

2γ

)
(3.1)

which counts the number of particles in the interval [1, n] (n even). In the continuum limit
this expression becomes

Q1(n) → 2

β
(u(x) − u(0)) + x

1

(
π − γ

2γ

)
x = n1. (3.2)
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Hence the lattice analogue of the correlation function (1.5) can be written as

〈�| exp(αQ1(n))|�〉 ≡ 〈0| ∏N
j=1 C(λ̃j ) exp(αQ1(n))

∏N
k=1 B(λ̃k)|0〉

〈0| ∏N
j=1 C(λ̃j )

∏N
k=1 B(λ̃k)|0〉 (3.3)

whereλ̃j are solutions of the Bethe ansatz equations (2.18) for the ground state configuration.
Let us first study the norm appearing in the denominator of this expression. To evaluate

this expression one should commute theC(λ̃j ) to the right of the product where they
annihilate the pseudo-vacuum|0〉. Since the commutation relations between the elements
of the monodromy matrix (2.10) are completely determined by theR-matrix we can use the
result of [24, 22] (see also [25, 26]) for the norm of Bethe ansatz states (after identifyingγ

with 2(π − η) in paper [22])

〈0|
N∏

j=1

C(λ̃j )

N∏
j=1

B(λ̃k)|0〉 = (− sinγ )N
{ ∏

j 6=k

f (λj , λk)

}{ N∏
j=1

a(λ̃j )d(λ̃j )

}
detN (3.4)

where theN × N matrix N is given by

Njk = δjk

{
i

∂

∂λ̃j

ln
a(λ̃j )

d(λ̃j )
+

N∑
n=1

K(λ̃j − λ̃n)

}
− K(λ̃j − λ̃k).

The functionsK(λ) and a(λ), d(λ) have been introduced in the previous section. In the
thermodynamic limit this expression can be further simplified: We rewriteN = I ·J where

Ijk = δjk − K(λj − λk)

θk

Jjk = δjkθj

θj = i
∂

∂λ̃j

ln
a(λ̃j )

d(λ̃j )
+

N∑
n=1

K(λ̃j − λ̃n).

Comparing the last expression with equations (2.25) and (2.26) for the ground state density
of particles one obtainsθj = −2πLρ(λj ). Performing the thermodynamic limit on the
matrix I one finds that it turns into a Fredholm integral operatorÎ = 1 + 1

2π
K̂ acting as

Î ∗ f |λ = f (λ) + 1

2π

∫ +∞

−∞
dµ K(λ − µ)f (µ). (3.5)

HereK(λ) is the kernel given in (2.27).
Putting everything together we find

〈0|
N∏

j=1

C(λ̃j )

N∏
j=1

B(λ̃k)|0〉 = (2πL sinγ )N
{ ∏

j 6=k

f (λj , λk)

}

×
{ N∏

j=1

a(λ̃j )d(λ̃j )ρ(λj )

}
det

(
1 + 1

2π
K̂

)
. (3.6)

We now turn to the numerator of (3.3): to reduce the evaluation of the expectation value
of exp(αQ1(n)) in a Bethe state (2.17) to the computation of scalar products we divide the
lattice of lengthL into two sub-chains of lengthn andL − n and associate a monodromy
matrix with each of them, namely

T (λ) = T (2, λ)T (1, λ) T (i, λ) =
(

Ai(λ) B(λi)

Ci(λ) D(λi)

)
i = 1, 2. (3.7)
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In terms ofL-operators they are given by

T (2, λ) = L(L, λ)L(L − 1, λ) . . .L(n + 1, λ)

T (1, λ) = L(n, λ)L(n − 1, λ) . . .L(1, λ).

By construction these monodromy matrices satisfy the same Yang–Baxter equation (2.9) as
T (λ). Similarly, the global reference state (2.15) can be decomposed into a direct product
of pseudo vacua for the subchains|0〉2 ⊗|0〉1 (remember that we have chosenn to be even)
which are eigenstates ofAi(λ) andDi(λ)

Ai(λ)|0〉i = ai(λ)|0〉i Di(λ)|0〉i = di(λ)|0〉i (3.8)

whereai(λ) and di(λ) are given by (2.16) withL replaced byn and L − n for i = 1, 2,
respectively. The creation and annihilation operatorsBi(λ) andCi(λ) act according to

Ci(λ)|0〉i = 0 〈0|Bi(λ) = 0. (3.9)

In this decomposed quantum space the numerator of (3.3) can be rewritten as (see e.g.
[9, 22])∑

1〈0|
∏
IC

C1(λ̃
C
IC

)
∏
IB

B1(λ̃
B
IB

)|0〉1 2〈0|
∏
IIC

C2(λ̃
C
IIC

)
∏
IIB

B2(λ̃
B
IIB

)|0〉2

×eαn1

{ ∏
IB ,IC

a2(λ̃
B
IB

)d2(λ̃
C
IC

)

}{ ∏
IIB ,IIC

a1(λ̃
C
IIC

)d1(λ̃
B
IIB

)

}
×

{ ∏
IB ,IIB

f (λB
IB

, λB
IIB

)

}{ ∏
IC,IIC

f (λC
IIC

, λC
IC

)

}
(3.10)

where the sum is over all partitions

{λ̃B
IB

} ∪ {λ̃B
IIB

} = {λ̃} {λ̃B
IB

} ∩ {λ̃B
IIB

} = ∅
{λ̃C

IC
} ∪ {λ̃C

IIC
} = {λ̃} {λ̃C

IC
} ∩ {λ̃C

IIC
} = ∅

of the set{λ̃} with card{λ̃IB
} = card{λ̃IC

} = n1, card{λ̃IIC
} = card{λ̃IIB

} = N − n1. Due to
(3.9) we only need to consider partitions such that the sizes ofIB andIC (andIIB andIIC)
are the same. We next turn to an investigation of the scalar products occurring in (3.10).
Owing to (3.8) and (3.9) and the fact that the monodromy matricesT (i, λ) fulfill the same
Yang–Baxter equation (2.9) asT (λ) it is sufficient to consider scalar products on the entire
lattice

SN = 〈0|
N∏

j=1

C(λC
j )

N∏
k=1

B(λB
k )|0〉.

Here we do not assume that the sets of spectral parameters{λB} and {λC} are the same,
and we also do not impose the Bethe equations (2.18). From (2.9) and the action on the
reference stateA(λ)|0〉 = a(λ)|0〉, D(λ)|0〉 = d(λ)|0〉 it follows that scalar products can be
represented as

SN =
∑
A,D

N∏
j=1

a(λA
j )

N∏
k=1

d(λD
k )KN

( {λC} {λB}
{λA} {λD}

)
(3.11)

where the sum is over all partitions of{λC} ∪ {λB} into two sets{λA} and {λD}. The
coefficientsKN are functions of theλj and arecompletely determined by the intertwining
relation (2.9). TheR-matrix (2.6) is, however, identical to the one for the spin-1

2 Heisenberg
XXZ model (after appropriate identifications of the coupling constants). This implies that
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the coefficientsKN for the sine–Gordon model and theXXZ chain are identical, so that we
can take over the result for theXXZ case (see e.g. [22]). The main point is that theKN ’s
can be represented asdeterminants. This is done in two steps: first the so-calledhighest
coefficients, which are obtained for the partition{λA} = {λC}, {λD} = {λB}, are represented
as determinants

KN

( {λC} {λB}
{λC} {λB}

)
=

( ∏
j>k

g(λB
j , λB

k )g(λC
k , λC

j )

) ∏
j,k

h(λC
j , λB

k ) det(MB
C )

h(µ, ν) = f (µ, ν)

g(µ, ν)
(MB

C )jk = g(λC
j , λB

k )

h(λC
j , λB

k )
= t (λC

j , λB
k )

(3.12)

where from (2.7)

h(λ, µ) = sinh(λ − µ − iγ )

−i sinγ
t (λ, µ) = − sin2 γ

sinh(λ − µ − iγ ) sinh(λ − µ)
.

In the second step arbitrary coefficientsKN are then expressed in terms of highest
coefficients as follows

KN

( {λC} {λB}
{λA} {λD}

)
=

( ∏
j∈AC

∏
k∈DC

f (λAC
j , λDC

k )

)( ∏
l∈AB

∏
m∈DB

f (λAB
l , λDB

m )

)
×Kn

( {λAB} {λDC}
{λAB} {λDC}

)
KN−n

( {λAC} {λDB}
{λAC} {λDB}

)
. (3.13)

Using (3.12) and (3.13) in (3.11) we obtain the following expression for general scalar
products in the lattice sine–Gordon model

SN =
∏
j>k

g(λC
j , λC

k )g(λB
k , λB

j )
∑

sgn(PC) sgn(PB)
∏
j,k

h(λAB
j , λDC

k )
∏
l,m

h(λAC
l , λDB

m )

×
∏
l,k

h(λAC
l , λDC

k )
∏
j,m

h(λAB
j , λDB

m ) det(MAB
DC) det(MAC

DB) (3.14)

where PC is the permutation{λAC
1 , . . . , λAC

n , λDC
1 , . . . , λDC

N−n} of {λC
1 , . . . , λC

N }, PB is the
permutation{λDB

1 , . . . , λDB
n , λAB

1 , . . . , λAB
N−n} of {λB

1 , . . . , λB
N }, sgn(P ) is the sign of the

permutationP , and

(MAB
DC)jk = t (λAB

j , λDC
k )d(λDC

k )a(λAB
j ). (3.15)

Following the steps first carried out in [27] it is now possible to representSN as a single
determinant. The discussion for sine–Gordon is identical to the only for theXXZ chain
[22] so that we only present a brief discussion of the necessary steps and give the final
result. We first note that the sum on the r.h.s. in (3.14) looks very similar to a Laplace
decomposition of the determinant of thesumof two matrices(S1)jk = t (λC

j , λB
k )a(λC

j )d(λB
k )

and (S2)jk = t (λB
k , λC

j )d(λC
j )a(λB

k ) (see e.g. [9] p 221). However, this does not reproduce
the h(λ, µ)-factors. This leads to the introduction of adual quantum fieldϕ(λ) acting in a
bosonic Fock space with vacua|0) and(0̃|† according to

ϕ(λ) = p(λ) + q(λ) [ϕ(λ), ϕ(µ)] = 0 (0̃|q(λ) = 0 = p(λ)|0)

[p(λ), q(µ)] = − ln(h(λ, µ)h(µ, λ)) [p(λ), p(µ)] = 0 = [q(λ), q(µ)].
(3.16)

We emphasize that the fieldϕ commutes for different values of spectral parameters. Using
the dual field it is now possible to recast (3.14) as asingle determinant of the sum of two

† We use the same notation as in [22].
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matrices

SN =
∏
j>k

g(λC
j , λC

k )g(λB
k , λB

j )

N∏
j=1

a(λC
j )d(λB

j )
∏
j,k

h(λC
j , λB

k )(0̃| detS|0)

Sjk = t (λC
j , λB

k ) + t (λB
k , λC

j )
r(λB

k )

r(λC
j )

exp(ϕ(λB
k ) − ϕ(λC

j ))

N∏
m=1

h(λB
k , λB

m)h(λC
m, λC

j )

h(λC
m, λB

k )h(λC
j , λB

m)

(3.17)

where r(λ) = a(λ)

d(λ)
. The consequence of representingSN as a single determinant is the

occurrence of the expectation value in the dual space.
Using (3.17) in (3.10) and then applying the dual field trick several times it is possible

to represent (3.10) as a single determinant of the sum of four matrices. This analysis is
completely analogous to theXXZ case treated in [22] so that we only state the result:

〈0|
N∏

j=1

C(λ̃j ) exp(αQ1(n))

N∏
k=1

B(λ̃k)|0〉 =
{ ∏

j 6=k

f (λj , λk)

}{ N∏
j=1

a(λ̃j )d(λ̃j )

}
(0̃| detG|0)

Gjk = t (λ̃j , λ̃k) + t (λ̃k, λ̃j )
r1(λ̃j )

r1(λ̃k)
exp(ϕ2(λ̃k) − ϕ2(λ̃j )) + exp(α + ϕ4(λ̃k) − ϕ3(λ̃j ))

×
[
t (λ̃k, λ̃j ) + t (λ̃j , λ̃k)

r1(λ̃j )

r1(λ̃k)
exp(ϕ1(λ̃j ) − ϕ1(λ̃k))

]

−iδjk sinγ
∂

∂λ̃j

(
ln(r(λ̃j )) +

N∑
n=1
n6=j

ln

[
h(λ̃j , λ̃n)

h(λ̃n, λ̃j )

] )
(3.18)

where

r1(λ) = a1(λ)/d1(λ) =
(

1 + 2S cosh(2λ − iγ )

1 + 2S cosh(2λ + iγ )

)n
2

and the commuting dual fieldsϕa are defined according to

ϕa(λ) = pa(λ) + qa(λ) (0̃|qa(λ) = 0 = pa(λ)|0) (0̃|0) = 1 a = 1 . . . 4

[qb(µ), pa(λ)] =


1 0 1 0
0 1 0 1
0 1 1 1
1 0 1 1

 ln(h(λ, µ)) +


1 0 0 1
0 1 1 0
1 0 1 1
0 1 1 1

 ln(h(µ, λ))
(3.19)

wherea, b = 1 . . . 4. Here all terms not proportional toδjk in Gjk are understood in the sense
of l’Hospital for the diagonal elements. In the thermodynamic limit further simplifications
take place. Following the analysis for the norms above we expressG as the product of two
matricesJ andW

G = −(sinγ )WJ Jjk = δjkθk Wjk = δjk − 1

θk

V(λ̃j , λ̃k) (3.20)

whereθj = −2πLρ(λj ) and

(sinγ )V(λ, µ) = t (λ, µ) + t (µ, λ)
r1(λ)

r1(µ)
exp(ϕ2(µ) − ϕ2(λ)) + exp(α + ϕ4(µ) − ϕ3(λ))

×
[
t (µ, λ) + t (λ, µ)

r1(λ)

r1(µ)
exp(ϕ1(λ) − ϕ1(µ))

]
. (3.21)
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In the thermodynamic limitW turns into an integral operator̂W = 1 + 1
2π

V̂ acting as(
1 + 1

2π
V̂

)
∗ f |λ = f (λ) + 1

2π

∫ +∞

−∞
dµ V (λ, µ)f (µ) (3.22)

where the integral kernel is obtained from (3.21) as (the arguments of the dual fields are
shifted by iπ/2 which does not alter the defining commutation relations (3.19))

V (λ, µ) = − sinγ

sinh(λ − µ)

{
1

sinh(λ − µ − iγ )
+ e−1

2 (λ)e2(µ)

sinh(λ − µ + iγ )

+ exp(α + ϕ4(µ) − ϕ3(λ))

(
1

sinh(λ − µ + iγ )
+ e−1

1 (µ)e1(λ)

sinh(λ − µ − iγ )

)}
(3.23)

with

e2(λ) =
(

1 − 2S cosh(2λ + iγ )

1 − 2S cosh(2λ − iγ )

)n
2

eϕ2(λ) e1(λ) =
(

1 − 2S cosh(2λ − iγ )

1 − 2S cosh(2λ + iγ )

)n
2

eϕ1(λ).

Putting everything together we thus find

〈�| exp(αQ1(n))|�〉 ≡ (0̃| det(1 + 1
2π

V̂ )|0)

det(1 + 1
2π

K̂)
(3.24)

where 1+ 1
2π

V̂ and 1+ 1
2π

K̂ are integral operators acting according to (3.22) and (3.5) with
kernels defined in (2.27) and (3.23).

4. Continuum limit

As mentioned in the introduction the purpose of the present work is to determine correlators
for the SG Quantum Field Theory, and the lattice model studied above is used merely as
a regulator for the UV divergences. We are therefore interested in thecontinuum limit of
the determinant representation (3.24). As mentioned above the SG Quantum Field Theory
is recovered from the lattice regularization by taking the lattice spacing to zero1 → 0 and
simultaneously the bare massm to infinity keepingm1

γ

π fixed [17]. In order to take the
continuum limit we now employ the following regularization for the integral operators in
(3.24): we restrict the integration for the integral operator 1+ 1

2π
V̂ to the interval [−3, 3],

and then take1 → 0 in such a way thatS cosh(2λ) � 1 ∀λ ∈ [−3, 3] (recall (2.2) for
the relation ofS and1). Using this regularization theej (λ)’s simplify to

e2(λ) = exp(−ip sinh(2λ) + ϕ2(λ)) e1(λ) = exp(ip sinh(2λ) + ϕ1(λ)) (4.1)

where

p = c2

8
1

π−2γ

π sin(γ )n1. (4.2)

Here we have used (2.29) andn1 = x should be identified with the continuum distance.
The constantc is given in terms of the physical soliton mass.

This regularization allows to embed the determinant (3.24) into a system of integrable
integro-differential equations which we shall need later to determine the subleading terms
in the asymptotic expansion of the correlation functions. With (4.1) the kernel (3.23) can
be brought into standard form [9]. We perform a change of variablesz = exp(2λ), and
replace the factors(sinh(λ − µ ± iγ ))−1 in (3.23) by an integration over an exponential.



Correlation function of the sine–Gordon model 231

Then the transpose of the kernel (3.23) reads (up to a similarity transform which leaves the
determinant unchanged)

1

2π
V T (z1, z2) = i

z1 − z2

∫ ∞

0
ds

4∑
j=1

Ej(z2|s)ej (z1|s) (4.3)

where

e1(z|s) = κ√
2π

exp(ϕ4(z))|2, z, s〉

E1(z|s) = − κ√
2π

exp(−ϕ3(z))〈2, z, s|

e2(z|s) = 1√
2π

|1, z, s〉

E2(z|s) = 1√
2π

〈1, z, s|

e3(z|s) = 1√
2π

exp(−ipk(z) + ϕ2(z))|2, z, s〉

E3(z|s) = − 1√
2π

exp(ipk(z) − ϕ2(z))〈2, z, s|

e4(z|s) = κ√
2π

exp(−ipk(z) − ϕ1(z) + ϕ4(z))|1, z, s〉

E4(z|s) = κ√
2π

exp(ipk(z) + ϕ1(z) − ϕ3(z))〈1, z, s|.

(4.4)

Here we use the notationk(z) = 1
2(z − z−1), w = exp(iγ ), κ = exp( α

2 ), and

|1, z, s〉 =
√

2z sin(γ )exp(izws) = 〈2, z, s|
|2, z, s〉 =

√
2z sin(γ )exp

(
−i

z

w
s
)

= 〈1, z, s| (4.5)

are normalized in such a way that〈1|1〉 = ∫ ∞
0 ds 〈1, z, s|1, z, s〉 = 1, and similarly

〈2|2〉 = 1.
The inverse of the integral operator 1+ 1

2π
V̂ T is defined by

(1 − R̂) ∗
(

1 + 1

2π
V̂ T

)
= 1 =

(
1 + 1

2π
V̂ T

)
∗ (1 − R̂)

R̂ =
(

1 + 1

2π
V̂ T

)−1

∗ 1

2π
V̂ T .

(4.6)

In terms of the functionsfj (z|s), Fj (z|s)
(1 − R̂) ∗ ej |z,s = fj (z|s) Ej ∗ (1 − R̂)|z,s = Fj (z|s) (4.7)

the kernel ofR̂ can be written in a form similar to (4.3)

R(z1, z2) = i

z1 − z2

4∑
j=1

∫ ∞

0
ds fj (z1|s)Fj (z2|s). (4.8)

as can be seen by acting with(1 + 1
2π

V̂ T ) on (4.8).
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5. Integro-differential equations

Let us now derive integro-differential equations (IDE) determining the functionsfj (z|s) and
Fj (z|s). The analogue of these equations in the case of impenetrable bosons proved very
useful for the anlysis of the corresponding RHP and we expect the equations below to play
a similar role for the problem at hand. To this end we consider derivatives with respect to
p and the integration boundary3. For the3-derivatives we find

∂3fj (z|s) +
4∑

l=1

∫ ∞

0
dt Ujl(z|s, t)fl(z|t) = 0

∂3Fj (z|s) −
4∑

l=1

∫ ∞

0
dt Fl(z|t)Ulj (z|t, s) = 0

(5.1)

where

Ujk(z|s, t) = 2ie23

z − e23
fj (e

23|s)Fk(e
23|t) + 2ie−23

z − e−23
fj (e

−23|s)Fk(e
−23|t). (5.2)

The p-derivatives of the functionsfj (z|s) obey the IDE

∂pfj (z|s) =
(

− ik(z)fj (z|s) + 1

2

4∑
l=1

[
B

(0)
j l + 1

z
B

(1)
j l

]
∗ fl

∣∣∣∣
z,s

)
(δj,3 + δj,4)

− 1

2z

4∑
k=3

C
(1)
jk ∗

4∑
l=1

[I − iB(1)]kl ∗ fl

∣∣∣∣
z,s

− 1

2

4∑
k=3

C
(0)
jk ∗ fk

∣∣∣∣
z,s

(5.3)

whereIjk(s, t) = δjkδ(s − t) and where the integral operatorsB(n) andC(n) are defined as

B
(n)
jk (s, t) =

∫ exp(23)

exp(−23)

dz

zn
ej (z|s)Fk(z|t)

C
(n)
jk (s, t) =

∫ exp(23)

exp(−23)

dz

zn
fj (z|s)Ek(z|t).

(5.4)

We note the following relations between the integral operatorsB
(n)
jk andC

(n)
jk

B
(0)
jk (s, t) = C

(0)
jk (s, t) [I − iB(1)]jk ∗ [I + iC(1)]kl|s,t = δjlδ(s − t). (5.5)

These identities can be easily proved by using (4.7). From now on we will replaceB
(0)
jk in

all expressions byC(0)
jk . The IDE forFj (z|s) are found to be

∂pFj (z|s) =
(

ik(z)Fj (z|s) + 1

2

4∑
l=1

Fl ∗
[
C

(0)
lj + 1

z
C

(1)
lj

] ∣∣∣∣
z,s

)
(δj,3 + δj,4)

− 1

2z

4∑
k=3

4∑
l=1

Fl ∗ [I + iC(1)]lk ∗ B
(1)
kj

∣∣∣∣
z,s

− 1

2

4∑
k=3

Fk ∗ C
(0)
kj

∣∣∣∣
z,s

. (5.6)

The ‘potentials’B(n) andC(n) obey the equations

∂pC
(n)
jk (s, t) = − 1

2

4∑
m=3

C
(0)
jm ∗ C

(n)
mk

∣∣∣∣
s,t

− 1
2

4∑
m=3

C
(1)
jm ∗

4∑
l=1

[I − iB(1)]ml ∗ C
(n+1)
lk

∣∣∣∣
s,t

− i

2
(δj,3 + δj,4)

[
C

(n−1)
jk (s, t) − C

(n+1)
jk (s, t)
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+i
4∑

l=1

C
(0)
j l ∗ C

(n)
lk

∣∣∣∣
s,t

+ B
(1)
j l ∗ C

(n+1)
lk

∣∣∣∣
s,t

]
+ i

2
(δk,3 + δk,4)[C

(n−1)
jk (s, t) − C

(n+1)
jk (s, t)] (5.7)

∂pB
(n)
jk (s, t) = − 1

2

4∑
m=3

B
(n)
jm ∗ C

(0)
mk

∣∣∣∣
s,t

− 1
2

4∑
m=3

4∑
l=1

B
(n+1)
j l ∗ [I + iC(1)]lm ∗ B

(1)
mk

∣∣∣∣
s,t

+ i

2
(δk,3 + δk,4)

[
B

(n−1)
jk (s, t) − B

(n+1)
jk (s, t)

−i
4∑

l=1

B
(n)
jl ∗ C

(0)
lk

∣∣∣∣
s,t

+ B
(n+1)
j l ∗ C

(1)
lk

∣∣∣∣
s,t

]
− i

2
(δj,3 + δj,4)[B

(n−1)
jk (s, t) − B

(n+1)
jk (s, t)]. (5.8)

The derivatives with respect to3 are given by

∂3C
(0)
jk (s, t) = 2e23fj (e

23|s)Fk(e
23|t) + 2e−23fj (e

−23|s)Fk(e
−23|t)

∂3C
(1)
jk (s, t) = 2fj (e

23|s)(Fk(e
23|t) + iFl ∗ C

(1)
lk |e23,t ) + 3 → −3

∂3C
(2)
jk (s, t) = 2e−23fj (e

23|s)(Fk(e
23|t) + iFl ∗ C

(1)
lk |e23,t + ie23Fl ∗ C

(2)
lk |e23,t )

+3 → −3

∂3B
(1)
jk (s, t) = 2Fk(e

23|t)(fj (e
23|s) − iB(1)

j l ∗ fl|e23,s) + 3 → −3.

(5.9)

Equations (5.1), (5.3) and (5.6) form a Lax pair. Their consistency is implied by the
following relation for the cross-derivatives

∂p∂3fj (z|s) = ∂3∂pfj (z|s). (5.10)

In order to simplify the computations we first introduce some notation. We rewrite (5.3) as

∂pfj (z|s) = − i

2
zfj (z|s)(δj,3 + δj,4) +

4∑
l=1

ajl ∗ fl

∣∣∣∣
z,s

+ 1

z

4∑
l=1

bjl ∗ fl

∣∣∣∣
z,s

(5.11)

where

ajl(s, t) = 1
2C

(0)
j l (δj,3 + δj,4 − δl,3 − δl,4)

bjl(s, t) = i

2
δjlδ(s − t) + 1

2
B

(1)
j l (δj,3 + δj,4) − 1

2

4∑
k=3

C
(1)
jk [I − iB(1)]kl .

(5.12)

In the same notation (5.6) can be written as

∂pFj (z|s) = i

2
zFj (z|s)(δj,3 + δj,4) −

4∑
l=1

Fl ∗ alj

∣∣∣∣
z,s

− 1

z

4∑
l=1

Fl ∗ blj

∣∣∣∣
z,s

. (5.13)

Similarly we introduce the notation

Ujl(z|s, t) = Ajl(3|s, t)
z − e23

+ Ajl(−3|s, t)
z − e−23

(5.14)

whereAjk(3|s, t) = 2ie23 fj (e23|s)Fk(e23|t). In what follows we will denote byÂjk(3)

the integral operator in thes-variable with kernelA(3|s, t). After some calculations we



234 F H L Eßler et al

arrive at the following equations

∂3∂pfj (z|s) = iz

2
(δj,3 + δj,4)

( 4∑
m=1

Â(3)jm ∗ fm|z,s
z − e23

+ 3 → −3

)

+
4∑

m=1

∂3ajm ∗ fm

∣∣∣∣
z,s

−
4∑

l=1

ajl ∗
( 4∑

m=1

Âlm(3) ∗ fm

z − e23
+ 3 → −3

)∣∣∣∣
z,s

+1

z

4∑
m=1

∂3bjm ∗ fm

∣∣∣∣
z,s

− 1

z

4∑
l=1

bjl ∗
( 4∑

m=1

Âlm(3) ∗ fm

z − e23
+ 3 → −3

)∣∣∣∣
z,s

(5.15)

∂p∂3fj (z|s) = −
4∑

m=1

(
∂pÂ(3)jm ∗ fm|z,s

z − e23
+ 3 → −3

)

+ iz

2

4∑
m=1

(
Â(3)jm ∗ fm|z,s

z − e23
+ 3 → −3

)
(δm,3 + δm,4)

−
4∑

l=1

4∑
m=1

(
Â(3)jl

z − e23
+ 3 → −3

)
∗

(
alm ∗ fm + 1

z
blm ∗ fm

) ∣∣∣∣
z,s

. (5.16)

In order to equate (5.15) and (5.16) we first rewrite both equations in the formOjm ∗ fm,
whereO are complicated integral operators, and then ‘truncate’ thefm’s from the resulting
expressions, which amounts to supposing that they form an independent set of functions
in the space the integral operators act in. In the next step we then compare the
resulting expressions (which are both meromorphic functions ofz) at the singular points
z = ∞, 0, e±23. If they (their residues) are equal at these points the expressions coincide
for all values ofz. For z → ∞ we get the condition

∂3ajm(s, t) = i

2
(δm,3 + δm,4 − δj,3 − δj,4)(Ajm(3|s, t) + Ajm(−3|s, t)). (5.17)

At z = 0 we obtain

∂3bjm(s, t) =
4∑

l=1

(e−23[Âjl(3) ∗ blm − bjl ∗ Âlm(3)] + 3 → −3)

∣∣∣∣
s,t

. (5.18)

At z = e23 we obtain

∂pAjm(3|s, t) = i

2
e23(δm,3 + δm,4 − δj,3 − δj,4)Ajm(3|s, t)

+
4∑

l=1

([ajl + e−23bjl ] ∗ Âlm(3) − Âjl(3) ∗ [alm + e−23blm])

∣∣∣∣
s,t

(5.19)

whereas the condition fromz = e−23 is obtained by taking3 → −3 in (5.19). It is
straightforward to show that these equations hold by inserting the expressions fora, b and
A and using the identities for thep- and3-derivatives ofC(n)

jk andB
(n)
jk written above.

Finally, to relate the functional determinant in (3.24) to the quantities introduced above
we turn to the logarithmic derivatives of det(1 + 1

2π
V̂ T ).

The derivative with respect top is given by

∂p ln

(
det

(
1 + 1

2π
V̂ T

))
= tr

(
(1 − R̂) ∗ 1

2π
∂pV̂ T

)
. (5.20)
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Using (4.4) we find that

1

2π
∂pV T (z1, z2) = k(z1) − k(z2)

z1 − z2

∫ ∞

0
ds

4∑
j=3

ej (z1|s)Ej (z2|s)

= 1

2

(
1 + 1

z1z2

) ∫ ∞

0
ds

4∑
j=3

ej (z1|s)Ej (z2|s). (5.21)

This implies that

(1 − R̂) ∗ 1

2π
∂pV̂ T

∣∣∣∣
z1,z2

= 1

2

∫ ∞

0
ds

4∑
j=3

∫ exp(23)

exp(−23)

dz [δ(z1 − z) − R(z1, z)]
ej (z|s)Ej (z2|s)

zz2

+ 1
2

∫ ∞

0
ds

4∑
j=3

fj (z1|s)Ej (z2|s). (5.22)

Using the representation (4.8) ofR(z1, z2) we rewrite the r.h.s. as

r.h.s. = 1

2

∫ ∞

0
ds

4∑
k=3

∫ exp(23)

exp(−23)

dz [δ(z1 − z) − R(z1, z)]
ek(z|s)Ek(z2|s)

z1z2

− i

2

∫ ∞

0
ds

∫ ∞

0
dt

4∑
k=3

4∑
l=1

∫ exp(23)

exp(−23)

dz
fl(z1|t)Fl(z|t)

z1z

ek(z|s)Ek(z2|s)
z2

+ 1
2

∫ ∞

0
ds

4∑
j=3

fj (z1|s)Ej (z2|s). (5.23)

Using this with (5.4) in (5.20) we finally arrive at

∂p ln

(
det

(
1 + 1

2π
V̂ T

))
= 1

2

4∑
k=3

∫ ∞

0
ds

[
C

(0)
kk (s, s) + C

(2)
kk (s, s) − i

4∑
l=1

B
(1)
kl ∗ C

(2)
lk

∣∣∣∣
s,s

]
.

(5.24)

The logarithmic derivative of the determinant with respect to3 is

∂3 ln

(
det

(
1 + 1

2π
V̂ T

))
= 2e23R(e23, e23) + 2e−23R(e−23, e−23). (5.25)
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After some manipulations similar to the case of the Bose gas (see [9]) this can be rewritten
as

R(e23, e23) = ie−23

2

4∑
j=1

∫ ∞

0
ds Fj (e

23|s) d

d3
fj(e

23|s)

− e−43

2 sinh(23)

[ 4∑
j=1

∫ ∞

0
ds fj (e

−23|s)Fj (e
23|s)

]

×
[ 4∑

l=1

∫ ∞

0
dt fl(e

23|t)Fl(e
−23|t)

]

R(e−23, e−23) = − ie23

2

4∑
j=1

∫ ∞

0
ds Fj (e

−23|s) d

d3
fj(e

−23|s)

− e43

2 sinh(23)

[ 4∑
j=1

∫ ∞

0
ds fj (e

23|s)Fj (e
−23|s)

]

×
[ 4∑

l=1

∫ ∞

0
dt fl(e

−23|t)Fl(e
23|t)

]
.

(5.26)

This embeds the determinant into the system of integrable integro-differential equations
derived above.

6. The Riemann–Hilbert problem

In this section we show that the results of the previous section can be reformulated in
terms of an infinite-dimensional RHP for an integral operator valued functionY (z). This
connection will enable us to determine the asymptotic behaviour of the correlation function.
We introduce the conjugation matrixG(z) of this RHP as

[G(z|s, t)]ij = δij δ(s − t) + 2πei (z|s)Ej (z|t). (6.1)

It’s elements can be expressed in terms of the projectors (4.5), e.g.

[G(z|s, t)]11 = δ(s − t) − κ2 exp(ϕ4(z) − ϕ3(z))|2, z, s〉〈2, z, t |
[G(z|s, t)]12 = κ exp(ϕ4(z))|2, z, s〉〈1, z, t |
. . .

Consider now an integral-operator valued functionY (z) with kernel Yjk(z|s, t), j, k =
1, . . . , 4, s, t ∈ [0, ∞) acting on a vectorf of functions ofz ands according to

[Y (z) ∗ f (z)]j =
∫ ∞

0
dt

4∑
k=1

Yjk(z|s, t)fk(z|t). (6.2)

Y (z) is solution to the following RHP
• Y (z) = I + ∑∞

k=1
Mk

zk for z → ∞.
• Y (z) is analytic throughout the complex plane with the exception of the contourC,

which is the interval [exp(−23), exp(23)] on the real axis (see figure 1).
• Y−(z) = Y+(z)G(z) on C where Y±(z) are the boundary values as indicated in

figure 1 andG(z) is the conjugation matrix (6.1).
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Figure 1. Conjugation contour for the RHP.

This RHP can be rewitten as the system of singular integral equations

Y+(z) = I + 1

2π i

∫ ∞

−∞
dz′ Y+(z′)[I − G(z′)]

z′ − z − i0
. (6.3)

The solution of (6.3) can be expressed in terms of the functionsE andf defined in section 4
as

Y +
ij (z|s, t) = δij δ(s − t) + i

∫ exp(23)

exp(−23)

dz′ fi(z
′|s)Ej (z

′|t)
z′ − z − i0

(6.4)

which follows from the identity

fj (z|s) =
∫ ∞

0
dt Yjk(z|s, t)ej (z|t). (6.5)

The potentialsB(1) andC(n) (5.4) can be related to the solutionY (z) of the RHP through
asymptotic expansions around 0 and∞. We find

Yjk(z) −→ I + iC(1) + izC(2) + iz2C(3) + O(z3) for z → 0 (6.6)

Yjk(z) −→ I − i

z
C(0) + O(z−2) for z → ∞. (6.7)

From (6.6) and (5.5) we find

[I − iB(1)] ∗ C(2) = −i(Y−1(0)
d

dz

∣∣∣∣
z=0

Y (z)). (6.8)

Together with (5.24) this expresses the correlation function (3.23) in terms of the solution
Y (z) of our RHP.

6.1. Analysis of the RHP

While the operator-valued RHP defined above determines the correlation functions
completely, its solution appears to be a daunting task in general. In what follows we
concentrate on the leading term in the asymptotical decomposition of the solution of the
RHP in the region of coupling constantπ

2 < γ < 2π
3 . The reason for this restriction is

the following: the upper bound onγ stems from the construction of the ground state of
our lattice regularization. The lower bound ensures that the parameterp defined in (4.2)
will go to infinity in the continuum limit, which essentially simplifies the analysis of the
RHP: it permits us to study the asymptotical decomposition of the solution of the RHP with
respect top (recall thatp contains the continuum distance as well). Due to the fact that
this parameter will be not only large but diverge the number of terms in the asymptotical
decomposition will be very small—in fact we expect only three contributions (see also
below). As we shall show in our analysis of the leading contribution, the special form of
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the conjugation matrix in addition to our interest in partial traces ofY only allows to reduce
the RHP to a tractable scalar one (still containing the auxiliary dual fields, of course). The
analysis of the subleading terms is technically much more involved and is currently under
investigation. We will report on this work elsewhere.

Let us now turn to the calculation of the leading term. First, we note that the conjugation
matrix can be decomposed into the product of an upper and lower triagonal matrix as follows

[G(z|s, t)]ab =
4∑

c=1

∫ ∞

0
ds ′ [T1(z|s, s ′)]ac[T2(z|s ′, t)]cb. (6.9)

Here

T1(z|s, t) =


1 α1(z|s, t) α2(z|s, t) exp(ipk(z)) α3(z|s, t) exp(ipk(z))

0 1 α4(z|s, t) exp(ipk(z)) α5(z|s, t) exp(ipk(z))

0 0 1 α6(z|s, t)
0 0 0 1

 (6.10)

with matrix elements

α1(z|s, t) = κ exp(ϕ4(z))

1 + κ2 exp(ϕ4(z) − ϕ3(z))
|2, z, s〉〈1, z, t |

α2(z|s, t) = − 1

κ
exp(−ϕ2(z) + ϕ3(z))|2, z, s〉〈2, z, t |

α3(z|s, t) = κ2 exp(ϕ1(z) − ϕ3(z) + ϕ4(z))

1 + κ2 exp(ϕ4(z) − ϕ3(z))
|2, z, s〉〈1, z, t |

α4(z|s, t) = − 1

κ2
exp(−ϕ2(z) + ϕ3(z) − ϕ4(z))|1, z, s〉〈2, z, t |

α5(z|s, t) = κ exp(ϕ1(z) − ϕ3(z))

1 + κ2 exp(ϕ4(z) − ϕ3(z))
|1, z, s〉〈1, z, t |

α6(z|s, t) = κ exp(ϕ2(z) + ϕ1(z) − ϕ3(z))

1 + κ2 exp(ϕ4(z) − ϕ3(z))
|2, z, s〉〈1, z, t |.

(6.11)

Similarly, we find

T2(z|s, t) =


c1(z|s, t) 0 0 0
β1(z|s, t) c2(z|s, t) 0 0

β2(z|s, t) exp(−ipk(z)) β4(z|s, t) exp(−ipk(z)) c3(z|s, t) 0
β3(z|s, t) exp(−ipk(z)) β5(z|s, t) exp(−ipk(z)) β6(z|s, t) c4(z|s, t)

 .

(6.12)

The matrix elements ofT2 are given by

β1(z|s, t) = − 1

κ
exp(−ϕ4(z))|1, z, s〉〈2, z, t |

β2(z|s, t) = − κ exp(ϕ2(z) − ϕ3(z))

1 + κ2 exp(ϕ4(z) − ϕ3(z))
|2, z, s〉〈2, z, t |

β3(z|s, t) = −κ2 exp(−ϕ1(z) − ϕ3(z) + ϕ4(z))|1, z, s〉〈2, z, t |
β4(z|s, t) = exp(ϕ2(z))

1 + κ2 exp(ϕ4(z) − ϕ3(z))
|2, z, s〉〈1, z, t |

β5(z|s, t) = κ exp(−ϕ1(z) + ϕ4(z))|1, z, s〉〈1, z, t |
β6(z|s, t) = −κ exp(−ϕ1(z) − ϕ2(z) + ϕ4(z))|1, z, s〉〈2, z, t |

(6.13)
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Figure 2. Deformation of the conjugation contour for the RHP.

and finally

c1(z|s, t) = 1 − κ2 exp(ϕ4(z) − φ3(z))

1 + κ2 exp(ϕ4(z) − ϕ3(z))
|2〉〈2|

c2(z|s, t) = 1 + 1

κ2
exp(−ϕ4(z) + ϕ3(z))|1〉〈1|

c3(z|s, t) = 1 − 1

1 + κ2 exp(ϕ4(z) − ϕ3(z))
|2〉〈2|

c4(z|s, t) = 1 + κ2 exp(ϕ4(z) − ϕ3(z))|1〉〈1|.

(6.14)

Let us now go through a ‘deformation’ of the RHP like for the case of the Bose gas
[28]. We define an integral-operator valued functionỸ (z) in the following way:

• Ỹ (z) = Y (z) outside the ‘bubble’ defined in figure 2. In particularỸ (z) = Y (z) for
z → 0, ∞, which will be important later.

• Ỹ (z) = Y (z)T1(z) in the region enclosed by the real axis and the contour01. Note
that in this region Imk(z) > 0 ∀z.

• Ỹ (z) = Y (z)[T2(z)]−1 in the region enclosed by the real axis and the contour02.
Note that in this region Imk(z) 6 0 ∀z.

It can be easily seen that the functionY (z) defined in the above way has the following
properties:Ỹ (z) is analytic in the whole complex plane with the exception of the contours
01 and02. On the contours0j Ỹ satisfies the conjugation equations

(Ỹ )−(z) = Ỹ+(z)T1(z) z ∈ 01

(Ỹ )−(z) = Ỹ+(z)T2(z) z ∈ 02.
(6.15)

Since we are only interested in the asymptotic behaviour of the determinant forp � 1 we
can use the fact that in this limitT1(2) become blockdiagonal in the vicinity of the contour
01(2) from which we find that

Y (z) ∼
(

8̃1(z) 0
0 8̃2(z)

)
. (6.16)

Here8̃j (z) are solutions to 2× 2 operator-valued RHPs

8̃−
j (z) = 8̃+

j (z) ∗ Gj(z) j = 1, 2 (6.17)
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with the same conjugation contourC as the original RHP and conjugation matrices

G1(z) =
(

1 − |2〉〈2| 0
0 1− |1〉〈1|

)
+

(
0 exp(ϕ3(z))

κ
|2〉〈1|

− exp(−ϕ4(z))

κ
|1〉〈2| (1 + exp(ϕ3(z)−ϕ4(z))

κ2 )|1〉〈1|
)

G2(z) =
(

1 − |2〉〈2| 0
0 1− |1〉〈1|

)
+

(
0 κ exp(ϕ1(z) + ϕ2(z) − ϕ3(z))|2〉〈1|

−κ exp(−ϕ1(z) − ϕ2(z) + ϕ4(z))|1〉〈2| (1 + κ2 exp(ϕ4(z) − ϕ3(z)))|1〉〈1|
)

.

(6.18)

Using the fact thatGj(z) form representations ofGL(2|C) we can now calculate the
determinants ofGj(z) as is shown in the appendix

det(G1(z)) = exp(−α + ϕ3(z) − ϕ4(z)) det(G2(z)) = exp(α − ϕ3(z) + ϕ4(z)).

(6.19)

The scalar RHPs for the determinants

det(8̃−
j (z)) = det(8̃+

j (z)) det(Gj (z)) j = 1, 2

is now easily integrated to give

det(8̃1(z)) = exp

(
− 1

2π i

∫ exp(23)

exp(−23)

dz1
−α + ϕ3(z1) − ϕ4(z1)

z1 − z

)
det(8̃2(z)) = exp

(
− 1

2π i

∫ exp(23)

exp(−23)

dz1
α − ϕ3(z1) + ϕ4(z1)

z1 − z

)
.

(6.20)

7. Leading term in the asymptotics of the correlator

Let us now relate the solution of the scalar RHPs to the logarithmic derivative of
det(1 + 1

2π
V̂ T ). The contribution due toC(0) in (5.24) can be obtained from (6.7) and

(6.20) as

1

2

4∑
k=3

∫ ∞

0
ds C

(0)
kk (s, s) = lim

z→∞
iz

2
ln(det(8̃2(z)))

= 1

4π

∫ exp(23)

exp(−23)

dz [α − ϕ3(z) + ϕ4(z)]. (7.1)

Similarly, the second contribution in (5.24) is with (6.7)

1

2

4∑
k=3

∫ ∞

0
ds ([I − iB(1)] ∗ C(2))kk(s, s) = − i

2

d

dz

∣∣∣∣
z=0

ln[det(8̃2(z))]

= 1

4π

∫ exp(23)

exp(−23)

dz
α − ϕ3(z) + ϕ4(z)

z2
. (7.2)

Combining these to the leading asymptotical behaviour of∂p ln(det(1 + 1
2π

V̂ T )) and using
the fact that they arep-independent we obtain

det

(
1 + 1

2π
V̂ T

)
= A exp

(
αp sinh(23)

π

)
× exp

(
p

4π

∫ exp(23)

exp(−23)

dz

(
1 + 1

z2

)
(ϕ4(z) − ϕ3(z))

)
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= A exp

(
αp sinh(23)

π

)
exp

(
p

π

∫ 3

−3

dλ cosh(2λ)(ϕ4(λ) − ϕ3(λ))

)
(7.3)

whereA is a p-independent constant and where in the last step we have changed back to
the originalλ-variables. Decomposing the combination of dual fields into ‘momenta’ and
‘coordinates’ and using the commutation relations (3.19) we find

ϕ4(λ) − ϕ3(λ) = P(λ) + Q(λ) [Q(µ), P (λ)] = 0. (7.4)

This enables us to trivially evaluate the expectation value with respect to the dual fields in
this approximation: the dual fields are found not to contribute at all leading to the following
result for the leading asymptotical behaviour of the correlator

〈�| exp(αQ1(n))|�〉 ∼ Ã exp
(αp

π
sinh(23)

)
(7.5)

whereÃ is a constant independent onp.
We will now argue that the approximation (7.5) is too crude due to the fact that we

have neglected the influence of the dual fields in thesubleadingfactors in the solution of
the RHP. We expect the final answer for the solution of the RHP to be of the form

det

(
1 + 1

2π
V̂ T

)
= C({ϕj }) exp(ζ({ϕj }) ln(p)) exp

(
αp sinh(23)

π

)
× exp

(
p

π

∫ 3

−3

dλ cosh(2λ)(ϕ4(λ) − ϕ3(λ))

)
(7.6)

where we keep in mind thatp → ∞ as the lattice spacing1 → 0. In (7.6) C is p-
independent and we have conjectured that the subleading term in the solution of the RHP
is a power-law inp. Evaluating the expectation value of (7.6) in the dual bosonic Fock
spacethe dual fields will contribute in the exponential term, i.e.

〈exp(αQ1(n))〉 ∼ (0̃| det

(
1 + 1

2π
V̂ T

)
|0)

= C̃pζ̃ exp(m̃p) exp(ξp ln(p)) exp

([
sinh(23)

π
+ ω

]
αp

)
. (7.7)

Here ζ̃ , ω and m̃ are functions ofγ , the soliton mass etc. For this answer to be of the
correct qualitative form, the following conditions have to be satisfied:

• ξ = 0, as the leading asymptotic behaviour should be exp(constantp).
• The last factor in (7.7) has to be cancelled by a suitable regularization procedure for

the result to make sense. In the continuum limit we have (3.2) which implies that

〈exp(αQ1(n))〉 →
〈
exp

(
2α

β
[u(x) − u(0)]

)〉
× exp

(
αx

1

π − γ

2γ

)
. (7.8)

We see that this expression contains a divergent factor depending both onα and on the
distancex. We now adjust our ‘cut-off’3 in such a way that the divergent factor in (7.7)
precisely reproduces the divergent factor in (7.8), i.e.

exp

(
αx

1

π − γ

2γ

)
= exp

([
sinh(23)

π
+ ω

]
αp

)
.

If ω = 0 this leads to the following relation between the ‘cut-off’3 and the lattice spacing
1

exp(23) = 1−2π−γ

π

(
8π(π − γ )

c2 sin(γ )γ

)
(7.9)
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with a finite constantc. The procedure outlined above fixes the relation between3 and1

and thus between the divergent part ofp and 3. Note, however, that the result (7.9) for
this relation is not consistent with the requirementS cosh(2λ) � 1, which we have used in
order to simplify the kernel ofV̂ in section 4. Therefore the assumptionω = 0 has to be
wrong and we do need a3-dependence ofω instead which corrects (7.9).

8. Summary and conclusion

In this paper we have applied the method of [9] to correlation fucntions in the sine–
Gordon model. In order to deal with the ultraviolet divergences we used an integrable
lattice regularization of the sine–Gordon model to derive a determinant representation for
quantum correlation functions. We then took the continuum limit and obtained a determinant
representation for the sine–Gordon QFT. Furthermore we embedded the determinant in
a system of integrable integro-differential equations which we showed to be associated
with an operator-valued RHP. The quantum correlation function was expressed in terms
of the solution of this RHP. We then presented a general approach to obtain the leading
asymptotical behaviour of the solution of the RHP, which in turn yields the leading term
in the asymptotics of the quantum correlation function. We showed that the subleading
terms in the asymptotical decomposition are essential for obtaining explicit expressions for
the asymptotics of the correlation function due to the presence of the dual quantum fields.
For the case at hand there appear to be only two subleading terms in the asymptotical
decomposition which is very encouraging! The analysis of the subleading terms is a difficult
mathematical problem by itself and we will report on it in a separate publication.
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Appendix. Gl(2|C) Representation by integral operators

In this appendix we show how to essentially simplify the analysis of the operator-valued
RHP through the use ofGL(2|C) representation theory. We closely follow the discussion
of [28].

Let us consider an integral-operator valued 2× 2 matrix with kernel

O(s, t) =
(

O11(s, t) O12(s, t)

O21(s, t) O22(s, t)

)
s, t ∈ [0, ∞). (A.1)

Multiplication of integral-operator valued matricesO andP is defined in the usual way as

[OP]ij (s, t) =
2∑

k=1

∫ ∞

0
dr Oik(s, r)Pkj (r, t) i, j = 1, 2. (A.2)

The left (right) action of the integral operatorsOij on fuctions defined on the interval [0, ∞)

is given by

Oij ∗ f |s =
∫ ∞

0
dt Oij (s, t)f (t) g ∗ Oij |t =

∫ ∞

0
ds f (s)Oij (s, t). (A.3)
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Let us now construct a special class of such operatorsÔ which form a representation of
Gl(2, C): we start with two pairs of functions(α(s), β(s)) and (A(s), B(s)) on [0, ∞)

which we represent in Dirac notation asα(s) ≡ |1〉, β(s) ≡ |2〉, A(s) ≡ 〈1| andB(s) ≡ 〈2|.
These functions are chosen in such a way that

〈1|1〉 ≡
∫ ∞

0
ds A(s)α(s) = 1 = 〈2|2〉 ≡

∫ ∞

0
ds B(s)β(s). (A.4)

In this notation we may write left multiplication bŷOik as

Ôik|1〉 =
∫ ∞

0
dt Oik(s, t)α(t). (A.5)

Observe now that one may define a representationÂ of Gl(2, C) in terms of integral
operators via

M ∈ Gl(2, C) 7−→ Â(M) =
(

I − |1〉〈1| 0
0 I − |2〉〈2|

)
+

(
M11|1〉〈1| M12|1〉〈2|
M21|2〉〈1| M22|2〉〈2|

)
.

(A.6)

Here M11, M12, M21 and M22 are complex numbers andI is the identity operator in the
space of integral oprators on [0, ∞). Multiplication by the integral operators|1〉〈1|, |1〉〈2|,
|2〉〈1| and |2〉〈2| is given by e.g.

|1〉〈2|f (s) =
( ∫ ∞

0
ds B(s)f (s)

)
|1〉. (A.7)

Therefore|i〉〈j | act like projectors on the ‘states’|i〉 and〈j |.
In particular identities like [I − |1〉〈1|]|1〉〈1| = 0 are seen to hold. Indeed for anyM,

N ∈ Gl(2, C) the representation̂A has the following properties

(P1) Â(MN) = Â(M)Â(N) Â(I ) = I Â(M−1) = Â−1(M)

(P2) Tr

(
Â(M) −

(
I − |1〉〈1| 0

0 I − |2〉〈2|
))

= tr M = M11 + M22

(P3) DetÂ(M) = detM = M11M22 − M12M21.

(A.8)

Properties (P1) and (P2) can be established by direct computation using the rules given
above. Property (P3) shows that the determinant of the integral operatorA is simply equal
to the determinant of the 2× 2 matrix M, which is quite remarkable. It is established by
expressing the determinant as a tracevia ln DetA = tr ln A, then using (P1) in the expansion
of the logarithm, using (P2) to express the operator trace in terms of the matrix trace, and
finally expressing the sum over traces back as determinant of the matrixM.

It can be easily checked that the representation (6.18) of the conjugation matricesGj(z)

is precisely of the above form (herez plays the role of a parameter), which in turn allows
us to evaluate the determinants of the conjugation matrices.

References

[1] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973Phys. Rev. Lett.30 1262
[2] Takhtajan L A and Faddeev L D 1975 Theor. Math. Phys.21 1046
[3] Zakharov V E, Takhtajan L A and Faddeev L D 1975 Sov. Phys. Dokl.19 824
[4] Kaup D J and Newell A C 1978 SIAM J. Appl. Math.34
[5] Takhtajan L A and Faddeev L D 1979 Proc. Stekhlov Inst. Math.3 277
[6] Faddeev L D and Takhtajan L A 1987 Hamiltonian Methods in the Theory of Solitons(Berlin: Springer)
[7] Sklyanin E K, Takhtajan L A and Faddeev L D 1979 Theor. Math. Phys.40 688



244 F H L Eßler et al

[8] Its A R, Izergin A G, Korepin V E and Slavnov N A 1990 Int. J. Mod. Phys.B 4 1003
[9] Korepin V E, Izergin A G and Bogoliubov N M 1993 Quantum Inverse Scattering Method, Correlation

Functions and Algebraic Bethe Ansatz(Cambridge: Cambridge University Press)
[10] Slavnov N A 1989 Theor. Math. Phys.79 502
[11] Smirnov F A 1986J. Phys. A: Math. Gen.19 L575
[12] Smirnov F A 1992 Form Factors in Completely Integrable Models of Quantum Field Theory(Singapore:

World Scientific)
[13] Itoyama H, Korepin V E and Thacker H B 1992Mod. Phys. Lett.B 6 1405
[14] Bernard D and LeClair A 1994Nucl. Phys.B 426 534
[15] Izergin A G and Korepin V E 1981Lett. Math. Phys.5 199
[16] Izergin A G and Korepin V E 1982Nucl. Phys.B 205 401
[17] Bogoliubov N M 1982 Theor. Math. Phys.51 540
[18] Tarasov V O, Takhtajan L A and Faddeev L D 1984 Theor. Math. Phys.57 1059
[19] Korepin V E 1979Theor. Math. Phys.41 953
[20] Bogoliubov N M and Izergin A G 1985Theor. Math. Phys.61 1195
[21] Takahashi M and Suzuki M 1972Prog. Theor. Phys.48 2187
[22] Eßler F H L, Frahm H, Izergin A G and Korepin V E 1995Commun. Math. Phys.174 191
[23] Eßler F H L, Frahm H, Its A R and Korepin V E 1995Nucl. Phys.B 446 448
[24] Korepin V E 1982Commun. Math. Phys.86 391
[25] Gaudin M 1972Internal ReportCentre d’́Etudes Nucĺeaires de Saclay, CEA-N-1559
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